Point-of-Care Diagnosis of Kaposi Sarcoma in Sub-Saharan Africa Using KS-Detect

Aggrey S. Semeere, MBChB, MMed (Int. Med.), MAS, FCP (ECSA)

Physician/Clinical Research Scientist Infectious Diseases Institute, Makerere University, Kampala, Uganda

David Erickson, PhD

S.C. Thomas Sze Director & Sibley College Professor

Sibley School of Mechanical and Aerospace Engineering, Cornell University Ithaca, New York.

Kaposi Sarcoma

 Cancer of endothelial cell origin, almost always affecting skin and mucous membranes, often extending to internally (lungs, GI tract)

Caused by a virus

- Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8) is a necessary (albeit not sufficient) cause of KS
- Had been rare (e.g., in U.S.) or uncommon (e.g., Africa) but in early 1980's became scarlet letter of HIV epidemic

Incidence of KS with Normalized Immune Status

	All Patients			Non-ART Users			ART Users			New ART Users		
Group	Female n = 94,334	Male n = 46,218	Overall n = 140,552	Female n = 84,552	Male n = 43,039	Overall n = 127,591	Female n = 66,470	Male n = 31,440	Overall <i>n</i> = 97,910	Female n = 51,283	Male n = 23,839	Overall n = 75,122
CD4+ T cell,	cells/mm ^{3 6}											
>350	66	80	70	141	161	146	29	40	32	40	43	41
	(39,112)	(36,179)	(45,109)	(76,263)	(60,428)	(87,247)	(11,76)	(10,161)	(14,70)	(13,125)) (6.0,302)) (15,109)
>500	60	121	74	146	158	149	13	99	31	0 ²	118	22
	(29,126)	(46,323)	(41,133)	(66,325)	(39,630)	(74,298)	(1.9,95)	(25,394)	(10,98)	(0,98)	(17,834)) (3.1,154

Among ART-treated with "normalized" their CD4 count (>500 cells/mm₃), KS incidence = 31/100,000 person-yrs)

Semeere et al. Cancer Medicine 2016

Survival following KS Diagnosis

Byakwaga et al. ICMH 2019

KS Diagnosis in Resource-Rich Settings

 Following clinical suspicion and biopsy

KS is a pathologic diagnosis

• Triad:

spindle cells

inflammatory infiltrate

abnormal vasculature

KS Diagnosis in Sub-Saharan Africa

 As of mid-2000's, clinical (i.e., macroscopic visual) diagnosis of KS was common

 Where biopsy was being performed, it was by resource-intensive excisional means via surgeons

KS Diagnosis in Resource-Limited Settings

- In sub-Saharan Africa, lack of available pathology services has made clinical (i.e., macroscopic visual) diagnosis of KS common
- Just how common is clinical diagnosis?
 - Zimbabwe (SIKO Study): 23% of 703 dx were path-confirmed
 - Uganda/Kenya: 36% of 2439 dx were path-confirmed (Semeere et al. 2012)

- Tertiary centers require path before a patient is even seen?
 - Likely not seeing all KS in your community

Building a Service Provision Platform for an Alternative

- Establishment of free-of-charge skin punch services in Uganda and Kenya
- 5 mm cylindrical punch; Gelfoam® for hemostasis; performed by mid-level personnel (nurses and phlebotomists)

Even When Skin Punch & Pathology Are Available

Turn-around-time often unacceptable

 N=958 biopsies in Uganda: at 1 month, 1 of 3 results NOT returned to patient or designate (Semeere et al. 2019)

 Accuracy often unacceptable

> Uganda/Kenya pathology compared to U.S. dermatopathologist gold standard (N=897) (Amerson et al. 2016)

Is There a Better Way?

We hypothesized:

- A point-of-care diagnostic test for KS can be developed
 - taking advantage of the central dogma of KS which is that KSHV is a necessary causal agent
- An automated and objective "liquid biopsy" for KSHV DNA content could, in large part, replace solid-phase pathology
- Assaying for KSHV DNA should be highly sensitive for KS, but a possible problem with this approach is specificity
 - 40 to 80% of adults in sub-Saharan Africa: KSHV-antibody-positive
 - 10 to 30% of KSHV-infected: detectable KSHV DNA in blood

User Driven Evolution of the POC KS-Detect System

V1 (2014)

V2 (2016)

V3 (2018)

KS-Detect technological evolution driven by local user feedback and field experience

Inside the TINY (Tiny Isothermal Nucleic acid amplification sYstem)

- Portable, Inexpensive & Easy to Use
- Florescence based detection
- 6x multiplexing using 0.2mL PCR tube consumables
- Ability to operate off electric, battery, solar, thermal energy
- Phase change materials to maintain constant temperature

nature biomedical engineering 5 mm cylindrical punch Gelfoam® for hemostasis

Histopathology

<u>Uganda</u>

 Anti-LANA stain available upon discretion of pathologist

U.S. (Cornell & UCSF):

- Examination of original slide
- New section and/or anti-LANA stain available upon discretion of pathologist
- Final interpretation: consensus ≥ 2 readers

Quantification of KSHV DNA under optimal conditions

U.S. (Cornell):

- DNA extraction by Qiagen kit
- Target : KSHV ORF 26 DNA
- Quantitative PCR &
- Loop-mediated isothermal amplification (LAMP) in a POC device: TINY

Diagnostic Performance of Quantification of KSHV DNA for the Diagnosis of KS

LAMP for KSHV ORF 26 in TINY

TINY performed in U.S. laboratories

Evaluation of TINY in sub-Saharan African labs is underway

ROC curves for diagnosis of KS; gold-standard = US-based pathology (341 KS and 150 Non-KS).

Currently: Validating TINY in Real-world Clinical labs

Multi-site Network For Clinical Validation

Uganda

- Infectious Diseases Institute (IDI) Kampala: Coordinating Center
- Mbarara Regional Referral Hospital
- Masaka Regional Referral Hospital
- Lacor Hospital Gulu

Rwanda

• Rwanda Military Hospital, Kigali

Kenya

- AMPATH-Moi University, Eldoret
- Chulaimbo District Hospital

Tanzania

Ocean Road Cancer Institute, Dar es Salaam

Malawi

UNC Project Lilongwe

Botswana

University of Botswana

Multi-site Study to Validate TINY

Site	No. Screened	No. Enrolled	No. Biopsied	No. with Pathology Result Returned	
Kenya					
Moi	22	19	19	17	
Chulaimbo	9	8	8	7	
Uganda					
Mbarara	113	95	95	88	
Masaka	100	98	98	94	
IDI	412	320	320	310	
Malawi	101	98	98	97	
Tanzania	35	35	35	24	
Rwanda	7	7	7	5	
Botswana	20	20	20	12	
Total	819	700	700	654	

Summary

- In sub-Saharan Africa, clinical "visual" diagnosis of KS is sub-standard
- Where available, pathology suffers from slow turn-around and inaccuracy
- Quantitative detection of KSHV DNA content in skin lesions by LAMP (in TINY), performed under optimal laboratory conditions:
 - Has both high sensitivity and specificity for the diagnosis of KS
 - Awaits real-world testing to confirm robustness
 - May also be relevant for resource-rich settings

 Easy to envision a future in which automated objective molecular diagnosis for KS is standard approach in any setting