NCI Center for Cancer Genomics

Our Mission is to develop and apply cutting edge genome science to better treat cancer patients

DISCOVERY by genomics and functional genomics

- Drug Development
- Pathway Function
- DNA-based Diagnosis

Precision Treatment
2012 and beyond NCI genomics

Now is the time to ask:

• What are the key science opportunities?
• What is the best and speediest path to the clinic?
• What are the bottlenecks: discovery -> trial design -> SOC?
• How will we capture clinical sequencing to drive further discovery?
CONTEXT
Early Genome Era (2001-2005)

Global views in normal and disease
Microarrays (DNA, RNA),
DNA Re-sequencing
RNAi

Systematic sequencing of pathways, gene classes
- BRAF Sanger (Davies et al. 2002)
- PIK3CA Hopkins (Samuels et al. 2004)

Systematic microarray studies and integrative genomics
- MITF/melanoma (Garraway et al. 2005)

Systematic translocation discovery from genomic data
- ETS/prostate Michigan (Tomlins et al. 2005)

Eric Lander: TCGA Symposium 11/11
Recommendation for a Human Cancer Genome Project

National Cancer Advisory Board
Working Group on Biomedical Technology
(Feb 2005)

CO-CHAIRS
Eric Lander (Broad Inst of MIT and Harvard)
Lee Hartwell (Fred Hutchinson)

MEMBERS
David Baltimore (Caltech)
Anna Barker (NCI)
Joan Brugge (Harvard)
Brian Druker (Oregon)
Geoffrey Duyk (TPG Ventures)
Chris Logothetis (M.D. Anderson)
John Niederhuber (Wisconsin)
Edward Penhoet (Moore Foundation)
Kathleen Schlom (NCI)
Bennett Shapiro (formerly Merck)
Ellen Sigal (Friends of Cancer Research)
Dinah Singer (NCI)
Margaret Spitz (M.D. Anderson)
Bruce Stillman (Cold Spring Harbor)
Harold Varmus (Memorial Sloan-Kettering)
Bert Vogelstein (Johns Hopkins)
Ralph Weissleder (Massachusetts General)

(Archival slide from 2005 courtesy of Eric Lander)
Cancer Genome: Premises

(1) Cancer is a genetic disease
(2) Cancer is a highly heterogeneous disease
(3) Cancer is an understandable disease
(4) Systematic understanding would have major implications for
 • Identification of cellular pathways that underlie cancer
 • Improved selection of therapeutic targets
 • Resolution of cancer into more homogeneous groups
 • Faster and more efficient clinical trials
 • Improved applications of drugs
 • Design of epidemiological studies
 • Identification of markers for early detection
(5) We are still ignorant about many key aspects of the genetic basis of cancer
(6) Systematic understanding of the cancer genome is
 • technologically feasible within the next decade
 • reasonable cost in context (requires 3% budget increase)
Human Cancer Genome Project: Goal

Comprehensive description of genetic basis of all major cancer types

Identify all genomic alterations significantly associated with all major cancer types:

(1) creating large collection of appropriate, clinically annotated samples from all major types of cancer

(2) completely characterizing each sample in terms of:
 • all regions of genomic loss or amplification
 • all chromosomal rearrangements
 • all mutations in coding regions of all human genes
 • all regions of aberrant methylation
 • complete gene expression profile, and other appropriate technologies.
Human Cancer Genome Project: Goal

Comprehensive description of genetic basis of all major cancer types

Identify all genomic alterations significantly associated with all major cancer types:

(1) creating large collection of appropriate, clinically annotated samples from all major types of cancer

(2) completely characterizing each sample in terms of:
 • all regions of genomic loss or amplification
 • all chromosomal rearrangements
 • all mutations in coding regions of all human genes
 • all regions of aberrant methylation
 • complete gene expression profile, and other appropriate technologies.

Outside concerns:
 • Cancer genes all known
 • Cancer so complicated, never know genes
 • Cost too high
Progress to Date
TCGA Project as Example

Nov 2010 Status
Vs.
Nov 2011 Status
TCGA data
November 2011

Different sequencing data-types identify different genomic lesions: often mutually supportive

Roychowdhury et al, 2011 Dec 1 Science Transl. Med
2012: The Year of TCGA Post-Pilot Publications

• Colorectal Cancer
• Acute Myeloid Leukemia
• Breast Cancer
• Endometrial Cancer
• Kidney Clear Cell
• Lung Adeno/Squamous
• Head and Neck Cancer
• Etc.
TCGA: Whole Genome Deep Sequencing

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>In Progress</th>
<th>Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBM</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>Colorectal</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Renal</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Breast (triple negative)</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>AML</td>
<td>-</td>
<td>49</td>
</tr>
<tr>
<td>Ovarian</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Endometrial (serous type)</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>LUSC</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>LUAD</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
<td>146</td>
</tr>
</tbody>
</table>

Updated Nov 1, 2011
Novel driver genes have been illuminating:
Link between cancer genetics and epigenetics (red)

- **PBRM1** – Renal cell carcinomas
- **EZH2, MEF2B** – Lymphomas
- **KCNJ5** – Adrenal adenomas
- **DNMT3A, SF3B1, SRSF2, U2AF35** – Leukemias
- **MLL2, MLL3** – Medulloblastomas
- **ARID1A, PPP2R1A** – Ovarian cancers
- **DAXX, ATRX** – Pancreatic endocrine tumors
- **BAP1, TTRAP** – Melanomas
- **IDH1, 2** – Gliomas
- **CIC, FUBP1** – Oligodendrogliomas
- **MED12** - Leiomyomas

List compiled by B. Vogelstein
Cancer Genomics is valuable and here to stay
Specific projects will sunset

<table>
<thead>
<tr>
<th>Program</th>
<th>FY11</th>
<th>FY12</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCGA The Cancer Genome Atlas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriated</td>
<td>$31.0</td>
<td>$31.3</td>
</tr>
<tr>
<td>ARRA</td>
<td>$118.6</td>
<td>$21.6</td>
</tr>
<tr>
<td>TARGET Therapeutically Applicable Research to Generate Effective Treatments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriated</td>
<td>$2.3</td>
<td>$1.0</td>
</tr>
<tr>
<td>ARRA</td>
<td>$3.0</td>
<td>$9.0</td>
</tr>
<tr>
<td>CTDD Cancer Target Discovery Net</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriated</td>
<td></td>
<td>$10.0</td>
</tr>
<tr>
<td>CGCI Cancer Genome Characterization Init.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriated</td>
<td>$5.7</td>
<td>$5.7</td>
</tr>
</tbody>
</table>
2012 – forward

Immediate science opportunities in 2012:

- Rare tumors - 10 types by 50 samples now launching
- Minority samples – launching with CRCHD
- Key mouse model tumors added (breast, NSCLC, melanoma, prostate)
- FFPE bake-off and hardening; smaller sample inputs
RNA profiling

Can/should become routine phenotyping in clinical settings

- From arrays to RNA-seq [CLIA]
- From Frozen samples to FFPE
- From big samples to < 100 cells
Formaldehyde Fixed Paraffin Embedded samples
Can now produce RNA (and DNA) data of exceedingly high quality

On the path to:

- rarer tumors
- minority patient groups
- tumor progression
- drug resistance
- and clinical DNA sequencing

Fresh - Total RNA-Seq

FFPE - Total RNA-Seq

Gary Schroth Illumina; Chuck Perou UNC/TCGA
Total RNA-Seq with DSN Detects Primary Transcripts

Note reduced signal from Exons in FFPE
Very small numbers of cells for genomic assays

Proof of principle for RNA

• Relevant for the clinic in early disease
• Relevant for mixed cellularity
• More flexible and general than custom panels, competitive in cost
Genes (Gencode V 7 ~50K) detected by RNA-seq as a function of cell number input and RNA prevalence

unpublished, B. Williams and G. Marinov, Wold lab Caltech
Transformed B-cells RNA: 10-cell pool and 3 single cell RNA-Seqs mRNA coverage is good across transcript length

unpublished, B. Williams and G. Marinov, Wold lab Caltech
Laser capture of individual cells and multi-cell areas
Id2 – Purkinje cell specific mRNA = 1289 nt
RPKM Purkinje = 1024
RPKM Granule = 64
State-of-the-art

FFPE appears nearly there; 170 tumor test in progress
Matched pairs with TCGA Frozen data
Both DNA and RNA
Expect results in mid 2012

Small cell numbers, dissected or sorted, fresh or frozen
Ready to generalize in 2012

Next:
Put them together: FFPE on tiny amounts
Path forward to Clinical Sequencing

Arul Chinnaiyan and colleagues: Dec 1, 2011

Timeline

Day 1
- Tumor biopsy

Day 2
- Pathology

Day 3-9
- Sample prep

Day 10-18
- Sequencing

Day 19-22
- Analysis

Day 23
- Sequencing tumor board

Day 24-26
- Validation

Day 27-30
- Results

Roychowdhury et al, 2011 Dec 1 Science Transl. Med
3 different sequencing data-types help to identify relevant tumor genome lesions

Tumor Board Review
Metastatic Colon Cancer: Liver biopsy genomics

- NOT KRAS expected for CRC: Implications for trial eligibility
 MEK, PI3K inhibitors suggested
- Patient failed AURK inhibitor; might have been predicted & avoided
- CDK inhibitors suggested

Expected for CRC, but not in this patient

<table>
<thead>
<tr>
<th>Gene</th>
<th>Point mutation</th>
<th>Abs. copy number</th>
<th>Structure</th>
<th>Gene expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRAS</td>
<td>p.Q61L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP53</td>
<td>p.R175H</td>
<td>1.43 (loss)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AURKA</td>
<td>p.W313R</td>
<td>2.89 (gain)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAS</td>
<td>p.T214N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYH11</td>
<td>p.V1527A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDK8</td>
<td></td>
<td>7.02 (gain)</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>EGFR</td>
<td></td>
<td>3.35 (gain)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPP2R3B</td>
<td></td>
<td>Fusion with ASMTL-AS1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gene</th>
<th>Amino acid position</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAS</td>
<td>G12</td>
<td>WT</td>
</tr>
<tr>
<td>BRAF</td>
<td>V600</td>
<td>WT</td>
</tr>
</tbody>
</table>

allele of uncertain meaning
2012 and beyond
DNA Sequencing Caught in Deluge of Data

Kathy Kmonicek
Published: November 30, 2011

“World capacity is now 13 quadrillion DNA bases a year, an amount that would fill a stack of DVDs two miles high”

Data access, storage, usability

A problem much bigger than TARGET and TCGA and even NCI

First consider storage and access and what we are doing about it
Cancer Genomics Hub: Due to accept and serve data Dec 15th 2011

- Stores BAM & VCF for TCGA, TARGET and CGAP/CGCI projects
- Designed for 25,000 cases with average of 200 gigabytes per case
- 5 petabytes (5×10^{15}) total, scalable to 20 petabytes
- co-location opportunities

Bold move by NCI
Such centers are few, expensive

Modified from D. Haussler
More New York Times

Essay
Computer Scientists May Have What It Takes to Help Cure Cancer

By DAVID PATTERSON
Published: December 5, 2011

“The war against cancer is increasingly moving into cyberspace.”
Clinic-to-Discovery
The opportunity we cannot afford to miss

DISCOVERY by genomics and functional genomics

Drug Development

DNA-based Diagnosis

Precision Treatment
Achieving Completeness: *Clinical can/should drive more and deeper discovery*

Global Cancer Alliance

Shared knowledge base where patients can choose to contribute their genomic data, clinical data

Many challenges, but essential

E. Lander, TCGA talk 2011
More Open and More Efficient Data Access is a Goal

Why we need it

Power of sample number.

Discover relationships never dreamed of.

What are the barriers?

Re-identification concerns in face of cybertech advances

Are GINA protections adequate?

Learn and appreciate the patient point of view
Open access to data goals for 2012

1. Assist advocacy community: make possible for patient choice for more open de-identified use

2. Document cancer patient community norm views

3. Investigate “data user” legal contract for de-identified data access

Re-examine the risk /benefit equation in light of advances and protections now in place

Investigate if unauthorized sequencing DNA of another person should/could be made illegal
Discovery-to-Clinic

Clinical trials organized around mutations and pathways

Fewer and better trials by NCI: set quality bar very high

Drug availability for genome-guided trials

Your advice?
Special Thanks to:

Dr. Kenna Shaw
Dr. Daniela Gerhard
and
our NHGRI collaborators