NCI Training and the Cancer Research Workforce

National Cancer Advisory Board, June 28th, 2011

Jonathan S. Wiest, Ph.D.

Director, Center for Cancer Training
National Cancer Institute

NCI's Center for Cancer Training (CCT)

CCT is catalyzing the development of a 21st century workforce capable of advancing cancer research through a scientifically integrated approach

Cancer Training Branch Awards

NCI CTB Training and Career Development Awards Budget, FY99-09

NCI CTB Training and Career Development Awards, FY99-09

Training, Fellowships, and Career Development Budget by IC

Chart generated from budget-by-mechanism data from NIH RePORT and NIH Databook sites

Building a scientifically diverse workforce

Breakdown of the CTB Portfolio by Activity

Does not include ARRA awards Data from FY09

CTB Individual and Institutional Awards

Source: NCI Funded Research Portfolio (NFRP). Note, some projects are coded to more than one high-level CSO category and therefore are counted as Dual Discipline.

Data from FY09

Issues affecting training

Major Goals of Training

- Produce scholarly work
- Master technical skills
- Develop critical questions/hypotheses
- Develop critical thinking skills
- Grow and expand scientifically
- Inter-, multi-, trans- disciplinary training
- Develop "soft" skills: writing, presenting, management, etc.
- Build towards independence and next career step

Overview and challenges facing the workforce

- Number of postdocs and predocs is increasing
- More predocs are doing postdoctoral training, especially in biomedical research
- Most trainees are supported on research grants
- Tenure track positions are not growing
- Trainees have difficulty transitioning to independence
- Time to first R01 continues to increase
- There is a need for a more scientifically diverse workforce
- It is difficult to track trainee outcomes
- Increased time in training may have a negative effect on students choosing science as a career track

Forces driving the workforce

- Colleges and universities are mostly graduate student driven
- Need for "low cost" highly trained workforce
- Tournament model of employment, not supply and demand
- Increasing competition for tenure track positions and grant funding

Transitioning to independence and reduce time to first R01

Addition of F30 and F31 to CTB Portfolio

- Analysis of future grant funding suggests trainees receiving F30s, F31s, and F32s may be more likely than trainees supported on institutional grants to have academic-focused careers
- Obtaining individual F grants will help demonstrate fundability and assist in future funding

K22 and K99/R00 Modifications

• K22

- Expand science to all cancer research
- Limit eligibility to 8 years postdoc experience and only investigators in mentored positions
- Limit eligibility to not include previous K support

K99/R00

Expand science to all cancer research

CCT/CTB activities to address these issues

- Improve the transition to independence
 - Add F30 and F31 mechanisms
 - Modify the K22 and K99/R00 mechanisms to broader science
 - Maintain the 3:1 postdoc to predoc ratio on training grants
- Building a scientifically diverse workforce
 - Maintain a diverse scientific portfolio
 - Develop career options and training on institutional training grants
 - Publicize the R25 mechanism for broader use
- Outcomes evaluation of the K portfolio

What else could we do?

- Encourage innovative institutional training grants offering career track options
- Encourage more structured training activities on RPGs
- Increase indirect costs on Career Awards
- Develop additional tracking tools

Other questions to consider

- Should we compress the number of Career (K) mechanisms?
- What is the right size and distribution of institutional training grants?

Thank you for your attention!