NLST methodological considerations

Denise R. Aberle, MD Professor of Radiology and Bioengineering David Geffen School of Medicine at UCLA

overview

Process standardization

- Image acquisition
- Screen interpretations
- Results communication
- Outcomes data collection
- Endpoint verification
- Implications for public policy

NLST CT Technique Chart

kV

Gantry rotation time

mA (Regular – Large patient values)

mAs (Reg – Lg)

Scanner effective mAs (Reg – Lg)

Detector collimation (mm) - T

Number of active channels - N

Detector configuration – N · T

Collimation (operator console)

Table incrementation (mm/rotation) - I

Pitch ([mm/rotation]/ beam collimation – I/NT

Table speed (mm/second)

Scan time (40 mm thorax)

Nominal reconstructed slice width

Reconstruction interval

Reconstruction algorithm

Images/data set (40 cm thorax)

CTDI vol (Dose in mGy)

- CT Technique Chart Standardized 18 parameters
 14 CT scanners: 4-64 channels
 120-140 kV; mAs < 80 (CTDIvol 2-3mGy)
 Nominal slice thickness: ≤ 2.5 mm
- Equipment certification annually
- Routine CT phantom calibration
- QC: DICOM headers | visual QC
- CXR techniques from CRFs and machine output: mR/mAs vs. kV

Cagnon CH. Acad Radiol 2006; 13: 1431-1441.

NLST CT Technique Chart	Siemens 64 Sensation	GE – VCT (64)	Toshiba Aquilion	Philips MX8000 16 slice
kV	120	120	120	120
Gantry rotation time	0.50 sec	0.50 sec	0.50 sec	0.5 sec
mA (Regular – Large patient values)	50-100	50-100	80-160	75-150
mAs (Reg – Lg)	25-50	25-50	40-80	37.5-75
Scanner effective mAs (Reg – Lg)	25-50	27-53	26.7-53.3	25-50
Detector collimation (mm) - T	0.6 mm	0.625	2 mm	.75 mm
Number of active channels - N	32	64	16	16
Detector configuration – N · T	32 x 0.6 mm	64 x 0.625	16 x 2 mm	16 x .75 mm
Collimation (operator console)	64 x 0.6 mm	.625/.984/39.37	NA	NA
Table incrementation (mm/rotation) - I	19.2 mm	39.37 mm	48 mm	18 mm
Pitch ([mm/rotation]/ beam collimation – I/NT	1.0	0.984	1.5	1.5
Table speed (mm/second)	38.4 mm/sec	78.74 mm/sec	96 mm/sec	36 mm/sec
Scan time (40 mm thorax)	11 sec	5.1 sec	4.2 sec	11 sec
Nominal reconstructed slice width	2 mm	2.5 mm	2 mm	2 mm
Reconstruction interval	1.8 mm	2.0 mm	1.8 mm	1.8 mm
Reconstruction algorithm	B30	STD	FC 10	B or C
# Images/data set (40 cm thorax)	223	200	223	223
CTDI vol (Dose in mGy)	1.9 – 3.8 mGy	2.2 – 4.4 mGy	2.7 – 5.4 mGy	1.9 – 3.8 mGy

UCLA

= Modifiable parameters on technologist console

radiation dose

- Whole body effective dose (weighted average dose to each organ)
 - Low dose helical CT: 1.5mGy
 - Mammogram: 0.7mGy
 - CXR: 0.01 mGy
- Low dose helical CT: estimates of organ specific dose
 - Lung: 4 mGy
 - Breast: 4 mGy
 - Red bone marrow, stomach, liver and pancreas: each ~1 mGy
- Screening mammogram organ specific dose:
 - Breast : 4mGy
 - Other organs: < 0.1mGy
- CXR: effective dose ~ 0.1 mSv

http://www.radiologyinfo.org/en/safety/index.cfm?pg=sfty_xray

image interpretation findings

- Non-calcified nodule(s) or masses $\geq 4 \text{ mm}$
 - Anatomic location, slice #; diameters; margins, attenuation
- Other findings:
 - Micronodules < 4 mm
 - Atelectasis, segmental or greater
 - Pleural thickening | effusion
 - Hilar | mediastinal adenopathy
 - Significant cardiovascular abnormality (CM, CAD, valvular calcification
 - Interstitial fibrosis
 - Significant other findings above | below diaphragm

image interpretation findings

- Non-calcified nodule(s) or masses $\geq 4 \text{ mm}$
 - Anatomic location, slice #; diameters; margins, attenuation
- Other findings:
 - Micronodules < 4 mm
 - Atelectasis, segmental or greater
 - Pleural thickening | effusion
 - Hilar | mediastinal adenopathy or masses
 - Significant cardiovascular abnormality (CM, CAD, valvular calcification
 - Interstitial fibrosis
 - Significant other findings above | below diaphragm

interpretation results

[-] Screen

No significant findings –or – Minor incidental findings not significant for lung cancer

[-] Screen

Significant findings unrelated to lung cancer [Some form of diagnostic recommendation required; e.g., echocardiogram for suspected pulmonary hypertension)

• [+] Screen

Findings potentially related to *lung cancer* [diagnostic recommendation of some form required]

diagnostic pathways nodule ≤ 4 mm

¹ Some nodules 4-10 mm may go directly to biopsy or other tests in ABNORMAL pathways.
 ² No growth is defined as < 15% increase in overall diameter OR no ↑ in solid component.

diagnostic pathways high suspicion

¹ Reserved for nodules considered highly likely to be BENIGN [polygonal shape, 3D shape ratio > 1.78]

diagnostic pathways [+] CXR

results communication | outcomes

- Study interpretation within 1 month
- Results reporting to
 - Participant
 - Primary physician (or documented participant refusal)
- Diagnostic algorithms served as guidelines
- 3-month | annual FU to determine management & results

outcomes collection

[+] screens

- Diagnostic procedures (CPT) | complications (ICD.9)
- Diagnoses: lung cancer | other cancer (ICD-0-3) | other Dx (ICD.9)
- Lung cancers
 - ICD-0-3 (histology and grade) | size | anatomic location
 - Clinical and pathologic stage (AJCC 6th Edition)
 - 1st line lung cancer treatment(s)
 - Time of progression or 2nd primary lung cancer
- Death certificates | time and cause of death
- Sample of [-] screen *significant other* & [-] screen no/minor abnl

endpoint verification

- Independent endpoint verification committee (chair + 4 members)
- EVP review dictated by a selection algorithm
 - Cause of death (ICD-10) on death certificate
 - Review blinded to screening arm and official death certificate
 - Arbitration for disparity between: DC & chair | between EVP members
- Selection algorithm intended to capture
 - All lung cancer deaths (reported or death certificate)
 - Death following a [+] screen
 - Deaths following diagnostic evaluation of [+] screen
 - Cause of death = COPD
- Sub-sample of cases not included in the algorithm underwent EVP
 UCLA

mplications of NLST

Efficacy proven under ideal conditions

- Institutions with sophisticated medical resources
- Multidisciplinary team for management follow-up
- High risk population
- Rigorous image quality
- Standardized interpretation | communication
- Systematic follow-up & outcomes collection
- Endpoint verification

implementation prerequisites

Consistent definitions of [+] screen

- All nodules | minimum size thresholds?
- All evolving nodules?
- Controlled vocabulary & consistent feature description
 - Anatomic location
 - Size
 - Consistency
- Guidelines for work-up & communication of screening findings
- Types and degree of follow-up
- CAD | image analysis

controlled vocabulary

GGN:

Solid:

Focal opacity of increased attenuation within which normal structures remain visible

Focal opacity of increased attenuation that completely obscures underlying structures

Part-solid: Focal opacity containing both solid and GG components

classification of adenocarcinoma

IASLC ATS ERS 2011	СТ
AAH (typically \leq 5 mm)	GGN
Adenocarcinoma in situ (AIS) ¹	GGN
	Part-solid
Minimally invasive ADC (MIA) ^{1,2,3}	Part-solid
Invasive ADC, lepidic predominant	Part-solid
Invasive ADC, acinar predominant	Part-solid
Invasive ADC, papillary predominant	to solid
Invasive mucinous adenocarcinoma	Solid

Godoy MCB, Naidich D. Radiology 2009; 253:606-622. Travis WD et al. J Thorac Oncol 2011; 6:244-285.

classification of adenocarcinoma

IASLC ATS ERS 2011	СТ	Prognosis	
AAH (typically ≤ 5 mm)	GGN	Pre-malignant	
Adenocarcinoma in situ (AIS) ¹	GGN	100% survival	
	Part-solid	100% survival	
Minimally invasive ADC (MIA) ^{1,2,3}	Part-solid	~100% survival	
Invasive ADC, lepidic predominant	Part-solid	~90 5-Yr progression free survival	
Invasive ADC, acinar predominant Invasive ADC, papillary predominant	Part-solid to solid	multiple factors	
Invasive mucinous adenocarcinoma	Solid		

¹ Rarely mucinous histology; ² Maximum diameter \leq 30 mm, ³ Invasive component \leq 5 mm

Godoy MCB, Naidich D. Radiology 2009; 253:606-622. Travis WD et al. J Thorac Oncol 2011; 6:244-285.

nodule characterization

2007: Part-solid

- 2010: Part-solid | larger
 - Increasing opacification
 - Increasing "mass"
 - Linear reticulation
 - Cysts
 - Air bronchograms
 - Convex margins

Invasive adenocarcinoma, acinar predominant

Round to oval-shaped malignant glands invading a fibrous stroma.

computer aided diagnosis

4-2006: Diameters: 24 x 11 mm Volume: 2805 mm³

3-2007: Diameters: 24 x 14 mm Volume: 5955 mm³

dD = 27% | dV = 112%

NLST ACRIN biospecimen repository

ACRIN web site: <u>http://www.acrin.org/ACRIN-NLSTBIOREPOSITORY.aspx</u>

- Specimens collected at 3 annual screening time points (N = 10,200)
- Purpose: validation of biomarkers of early detection
- Biorepository open to scientific community | 2-step peer-review process

Specimen Type	Samples	Number Participants	# Participants with ≥ 1 sample	% Participants with ≥ 1 sample
Plasma	108,666	10,218	10,133	99.17%
Buffy coat	108,891	10,218	10,132	99.16%
Urine	55,332	10,247	10,168	99.23%
Sputum cell pellet	39,544	8,336	8,173	99.04%
Remnant tissue TMA	(NLST trial wi	de)		

looking forward

lessons from mammography implementation

- Establish cost-effectiveness
- Optimal risk cohorts for CT-screening
- Standardize practices
 - Acquisition parameters and radiation dose
 - Interpretation and communication practices
 - Follow-up documentation
- Determine what molecular biomarker(s)
 - Identify high risk individuals who may benefit from screening
 - Motivate more aggressive evaluation of [+] screen
- Establish appropriate venues for screening within broader programs of risk modification and smoking cessation

