Understanding the Functional Significance of Variants Identified in Breast Cancer Susceptibility Genes

National Cancer Advisory Board Meeting December 1, 2009

Shyam K. Sharan, Ph.D. Mouse Cancer Genetics Program Center for Cancer Research, NCI

BRCA1 and BRCA2 Mutation Increases Breast Cancer Risk

Responsible for most familial breast cancer

Lifetime risk in general population: 13.7% BRCA1/2 mutation carriers: 35-85%

Increased ovarian cancer risk

BRCA1 and BRCA2: Role in DNA Repair

BRCA2: 3418 amino acids

Missense Mutations in BRCA1 and BRCA2

Functional Significance of Single Amino Acid Changes in *BRCA1* and *BRCA2*: Neutral or Deleterious?

- Several predicted missense mutations were found to be neutral changes
- No reliable functional assay
- Prevalence in the general population
- Co-segregation with disease

Prevalence in the General Population

Linkage Analysis

Prevalence of BRCA1 & BRCA2 Mutations

- 10,000 individuals were screened for BRCA1 and BRCA2 mutations by Myriad Genetics*.
- 55% indicated a personal history of breast or ovarian cancer
- 17% had deleterious mutations
- 13% had one or more variants of unknown clinical significance
- How about other genes?

*Journal of Clinical Oncology (2002) **20,** 1480-1490.

A Mouse Embryonic Stem Cell-Based Functional Assay

• Embryonic Stem cells for functional analysis BRCA1/2 are essential for ES cell viability, maintain stable genome

 Use of Bacterial Artificial Chromosomes (BAC) containing human *BRCA1 or 2* Average insert size of BAC is ~150,000 bases coding & non-coding alterations, expression at physiological levels, easy to modify by recombineering

Recombineering: Recombination-based Genetic Engineering

- Technology developed at NCI
- Utilizes the recombination system of bacteriophage
- Extremely efficient method to manipulate DNA
- Allows precise and rapid alteration of a single nucleotide

Swaminathan et al., Genesis, 2001; Yang and Sharan, Nucleic Acids Res. 2003; Sharan et al., Nature Protocols, 2009

Functional Analysis of BRCA2 in Mouse ES Cells

Functional Analysis of BRCA2 in Mouse ES Cells

ES cells are not viable

Mutation is deleterious

ES cells are viable

Mutation can be neutral or hypomorphic

Examining BRCA2 Function in Viable ES Cells

- Test ability to repair damaged DNA
- Effect on overall genomic stability

Functional Evaluation of BRCA2 Variants in Mouse ES cells

BAC Complementation

Brca2 Ko/+ Brca2 Ko/Ko

Sergey Kuznetsov

Y3308X Mutant cells are Viable but Hypersensitive to Genotoxins

Truncation: Loss of 110 aa

Brca2 Ko/+

Y3308X

Y3308X cells Exhibit Genomic Instability

Brca2 Ko/+

Y3308X

BRCA2: Structure-Function Analysis

BRCA2 Structure Analysis Arg3052Trp vs. Arg3052GIn

R3052Q Variant Shows Moderate Sensitivity to DNA Damaging Agents

Arg3052Gln Arg3052Trp

R3052Q Variant Results in Moderate Genomic Instability

Evaluating Functional Significance of Missense Mutations in ES cells

Kuznetsov et al. Nature Medicine 2008

Functional Analysis of BRCA1 mutants in ES cells

Chang et al. J Clinical Investigation 2009

Functional Analysis of Deleterious Variants in Mice

Suhwan Chang

E3309X: a Real Life Dilemma

Conclusions

- ES cells provide a simple, tractable system to study BRCA1 & BRCA2 variants
- Clinical relevance
- The ES cell-based approach can be used to examine variants identified in other human disease genes

Acknowledgements

Kajal Biswas, Ph.D

Gloria Caballero Suhwan Chang, Ph.D. Rajnikant Chittela, Ph.D. Betty Martin Susan Lynn North Subha Philip, Ph.D. Stacey Stauffer Hamida Thankur, Ph.D. Eswary Thirathgiri, Ph.D. Former members Sergey Kuznetsov, Ph.D. Srividya Swaminathan , Ph.D. Yongping Yang, Ph.D. Kung-Ae Kim

Mouse Cancer Genetics Program Deborah Swing (Transgenics) Sandra Burkett (Cytogenetics)

Gene Regulation & Chromosome Biology Laboratory **Donald Court Ph.D.**