Epigenetic genome control by RNAi and transposon-derived proteins

Shiv Grewal, Ph.D. Center for Cancer Research National Cancer Institute

Distinct levels of chromatin organization

Chromatin modifiers and RNA processing factors suppress transcriptional "noise" across genome

Accumulation of aberrant RNAs can lead to genomic instability

RNAi and heterochromatin factors cooperate with a variant histone H2A.Z to suppress antisense RNAs

Accumulation of aberrant RNAs can lead to genomic instability

Silencing of retrotransposons and repeat elements by RNAi and chromatin-modifying factors

Genome-wide suppression of antisense RNAs by a variant histone and the RNAi machinery

S. pombe genome contains several classes of repeat elements that are assembled in repressive chromatin

All retroelements are bound by transposase-derived CENP-B proteins (Cam et al Nature 2008)

CENP-Bs localize to retrotransposons and their remnants in the S. pombe genome

CENP-Bs recruit Clr3 and Clr6 histone deacetylases to repress Tf2 retroelements

CENP-Bs recruit SHREC and Clr6 histone deacetylases to repress Tf2 retroelements

Transcriptional and recombinational suppression

CENP-Bs and their associated HDACs protect integrity of the genome

<u>neo^R colonies</u>

SHREC activities facilitate positioning of nucleosomes to suppress transcriptional "noise"

Micrococcal nuclease digestion patterns

Silencing and recombination suppression

S. pombe genome contains several classes of repeat elements that are assembled in repressive chromatin

Heterochromatin: a versatile recruiting platform

HP1 proteins and their associated HDACs collaborate to enforce heterochromatic transcriptional silencing

Silencing of retrotransposons and repeat elements by RNAi and chromatin-modifying factors

Genome-wide suppression of aberrant RNAs by a variant histone and the RNAi machinery

Large proportion (>90%) of the S. pombe genome including the intergenic regions are transcribed in both directions

RNAi and heterochromatin factors cooperate with a variant histone H2A.Z to suppress antisense RNAs

Accumulation of aberrant RNAs can lead to genomic instability

H2A.Z is enriched at 5' ends of genes

ChIP profiling of H2A.Z

 H2AZ is a histone H2.A variant that is deposited onto chromatin by the SWR-C

• Loss of H2A.Z affects various chromosomal processes but its exact function is not known

Loss of H2A.Z (pht1) causes disproportionate increase in antisense transcripts at convergent gene loci

Strand-specific RT-PCR

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

> QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

H2A.Z acts synergistically with Clr4 and Ago1 to suppress antisense transcripts

Antisense RNAs correspond to read-through transcripts rather than new initiation events

Readthrough antisense RNAs accumulate in exosome (rrp6) mutant

GuishTowr¹⁰ and a TIFT (documproceed) decompressor are needed to see this picture. QuickTime¹⁴ and a TIFF (Uncompressed) decompress are conduct to and the altrinoit

Quality and a TIPP (Description) description

Quint?ime** and a TFP (Uncerpresed) decomposes are needed to see this picture.

Loss of exosome causes upregulation of antisense transcripts in a pattern identical to H2A.Z clr4 mutant

H2A.Z and Pol II-associated Ago1 are components of RNA quality control mechanism involved in antisense suppression

Summary

Transposon-derived CENP-B proteins and RNAi target chromatin modifying activities which in turn facilitate nucleosome positioning to suppress transcriptional noise at repeat elements

H2A.Z is a component of genome indexing mechanism that cooperates with RNAi and heterochromatin factors to suppress antisense RNAs

Acknowledgments

Grewal Lab

Martin Zofall Tamas Fischer Ke Zhang Bowen Cui Francisca Reyes-Turcu Natalia Kommissarova Ken-ichi Yamane Chanan Rubin Takeshi Mizuguchi Nazanin Ashourian

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Former Lab Members

Tomoyasu Sugiyama (Tsukuba Univ) Estelle Nicolas (CNRS, Toulouse) Ee Sin Chen (National Univ. Singapore) Ken-ichi Noma (Wistar Institute) Songtao Jia (Columbia, NY) Ira Hall (Univ Virginia) Jun-ichi Nakayama (Riken, Kobe) Takatomi Yamada (Univ Tokyo) Hugh Cam (Boston)

Collaborators

Peter FitzGerald (NCI) Tim Veenstra and Ming Zhou (NCI)

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

