“Tumor Initiating Cells in Human Cutaneous Squamous Cell Carcinoma”
Jonathan Vogel, M.D.
Dermatology Branch
Introduction

Cancers that exhibit a heterogeneous morphology with a developmental hierarchy of proliferating and differentiating cells may be maintained by a distinct population of cancer stem cells or tumor initiating cells (TIC), that possess stem cell properties of self-renewal and long-term reconstitution of the tumor.

To identify, isolate, and characterize these cells, in vitro tissue culture assays and in vivo animal models that can accurately recapitulate the human cancer are needed.

TIC are valuable targets for understanding alterations in the normal developmental processes that can lead to cancer.

Demonstrate that a small subset of human SCC cells (~1%) expressing a prominin-1 (CD133) epitope are highly enriched for TIC
Human Squamous Cell Carcinoma (SCC)

Squamous cell carcinomas and basal cell carcinomas represent more than 10^6 cases per year, about 25% SCC

Etiology due to DNA damage secondary to sun and environmental exposure

High incidence of SCC metastasis in transplanted and immunocompromised patients

Proliferating dysplastic keratinocytes invade locally as a mass with finger-like tumor projections invading into tissues
SCC continue to differentiate with Ki67+ proliferating cells located at the periphery of SCC tumor projections.

Normal Skin: K5 & Involucrin

Squamous cell carcinoma
Ki67 & Involucrin
Isolation and characterization of tumor initiating cells in SCC

I

Isolation of single cell suspension

II

Separation of cells based on cell surface markers

III

Assess for growth/tumor formation

In vitro assay In vivo tumor initiation assay
Human SCC form spheroid tumor cell colonies in culture

Bulk Human Squamous Cell Carcinoma Cell Suspension

Tissue Culture Plate with Irradiated 3T3 feeder layer

Normal Human Keratinocytes

Human Squamous Cell Carcinoma
In Vivo Model for Human SCC Initiation

Successful xenografts of human SCC cell suspensions required extensive “humanization” of the graft site.

Establishing this in vivo assay required 140 separate human SCC samples and 155 individual mouse xenografts over a 3 year period.
Isolation and characterization of tumor initiating cells in SCC

I. Isolation of single cell suspension

II. Separation of cells based on cell surface markers

III. Assess for growth/tumor formation

In vitro assay *In vivo tumor initiation assay*
CD133 was expressed on scattered cell clusters in the proliferating layer of the human SCC tumor projections.
CD133+ cells represent a rare subset of human SCC cells
Mean 0.81% +/-0.86% n=31
Summary of Cell Surface Markers in SCC

Proliferating SCC periphery
CD71-hi
(CD24- and CD146-)

Differentiating inner SCC
CD24-hi and CD146-hi
(CD71-)

CD133-Hi

CD200+ cells are not present in SCC and CD44+ cells were CD45+
Isolation and characterization of tumor initiating cells in SCC

1. Isolation of single cell suspension
2. Separation of cells based on certain characteristics
3. Assess for growth/tumor formation

In vitro assay

In vivo tumor initiation assay
CD133+ cells isolated from SCC are enriched for spheroid colony formation.
Isolation and characterization of tumor initiating cells in SCC

I Human SCC
 → Isolation of single cell suspension
 → Separation of cells based on certain characteristics
 → Assess for growth/tumor formation

- In vitro assay
- In vivo tumor initiation assay
Tumor growth was dependent on the number of unsorted human SCC cells xenotransplanted into Nude Mice.

TIC frequency = 1 / 1,400,000 Total SCC cells

82 Total Xenographs into Nude Mice
Xenotransplanted CD133+ SCC cells are highly enriched for TIC

42 total xenografts from 28 different human SCC specimens

TIC frequency = 1 / 483 CD133+ cells
CD133+ SCC can be serially transplanted - demonstrating the stem cell properties of self-renewal and tumor reconstitution

Primary SCC Xenografts

FACS analysis of CD133+ / CD45- cells in primary SCC xenograft = 0.7% (n=11)

Serial transplants of CD133+ from 1’ xenografts

Secondary SCC Xenografts
Human CD133+ SCC cells are enriched for TIC when serially transplanted into mice

14 total serial xenografts from 8 different human SCC specimens

TIC frequency = 1 / 863
Xenotransplanted CD133+ SCC cells recreates the original tumor morphology
Conclusions

A discrete small sub-population (1%) of human CD133+ SCC cells are highly enriched for tumor-initiating cells (TIC) in an in vivo human SCC xenograft model.

The ability to isolate and characterize enriched TIC subpopulations, such as CD133+ cells in human SCC, will be important for understanding how normal tissue developmental programs have been altered in cancer. TIC can be analyzed for:

- Global gene expression profiles
- Genetic and epigenetic changes
- Stromal microenvironment or “niche” influences on TIC behavior

In vivo animal models will need to be optimized to more closely mimic the human microenvironment.

Enriched TIC also represent potentially valuable targets for therapeutic strategies that can selectively inhibit their growth and self-renewal.
Acknowledgments

Vogel Lab
Atsushi Terunuma
Jean-Philippe Therrien
Manabu Ohyama
Girish Patel
Renuka Pudi
Carole Yee

NCI
Stuart Yuspa

Dermatology branch
Mark Udey
Maria Turner
Steven Katz

Medicine Branch
William Telford
Veena Kapor

Cancer stem cell interest group -
Barbara Vonderhaar
Snorri Thorgeirsson

Laboratory of Cellular Oncology,
Michael Radonovich
Cindy Masison
John N. Brady

Laboratory of Pathology, CCR
Michael Emmert-Buck

Thanks!
NCAB Questions

1. What criterion should be applied to the development of cancer stem cell (CSC) lines use for therapeutic screening purposes?

2. What is the best approach to analyze the diagnostic and/or prognostic value of CSC markers in human cancer?

3. What are the minimum requirements for the xenograft in vivo models to convincingly demonstrate the presence of cancer stem cells in sub-populations of cancer cells?

4. Once enriched populations of CSC are isolated, can we leverage these discoveries into therapeutics before their biology is completely understood? If so, by what methods?