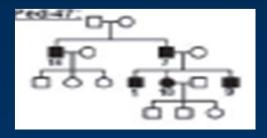
Lung Cancer Etiology and Genetics

Neil Caporaso
Division of Cancer Etiology and Genetics

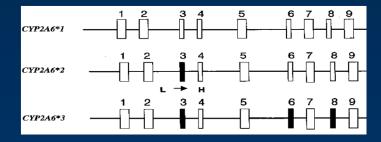
1 2009

OF HEALTH AND HUMAN SERVICES

National Institutes of Health


A personal journey in the NCI intramural program.....

Goal to identify hereditary component of lung cancer


3 lines of evidence available in the late 1980's

Pedigrees

Pharmacogenetics

A Population Perspective on Lung Cancer and Smoking

- Descriptive Epidemiology
- Molecular Epidemiology
- Integrative Epidemiology
- Genomics
 - Smoking
 - Lung Cancer
- Importance of Key Subgroups
- Summary

A Population Perspective on Lung Cancer and Smoking

- Descriptive Epidemiology
- Molecular Epidemiology
- Integrative Epidemiology
- Genomics
 - Smoking
 - Lung Cancer
- Key Subgroups
- Summary

The lung cancer challenge....

- 1- Drives overall cancer mortality in the US and worldwide
- 2- Treatment and screening pose challenges
- 3- Lung cancer is paradigm for genetics of complex disease
- 4- Clearest example of environment and gene in cancer
- 5- The clearest example of a genetically influenced behavior associated with the leading public health problem in the world

2009 Estimated US cancer Deaths*					
Lung & bronchus	30%	Men	Women	26%	Lung & bronchus
Prostate	9%	292,540	269,800	15%	Breast
Colon & rectum	9%			9%	Colon & rectum
Pancreas	6%			6%	Pancreas
Leukemia	4%			5%	Ovary
Liver & intrahepatic bile duct	4%			4%	Non-Hodgkin Iymphoma
Esophagus	4%			3%	Leukemia
Urinary bladder	3%			3%	Uterine corpus
Non-Hodgkin	3%	lymphoma		2%	Liver & intrahepat
Kidney & renal pelvis	3%				bile duct
All other sites	25%			2%	Brain/ONS
				25%	All other sites

,	(,		
Site	1975-1977	1984-1986	1996-2004
All sites	50	54	66
Breast (female)	75	79	89
Colon	52	59	65
Leukemia	35	42	51
Lung and bronchus	13	13	16
Melanoma	82	87	92
Non-Hodgkin lymphoma	48	53	65
Ovary	37	40	46
Pancreas	3	3	5
Prostate	69	76	99
Rectum	49	57	67
Urinary bladder	74	78	81

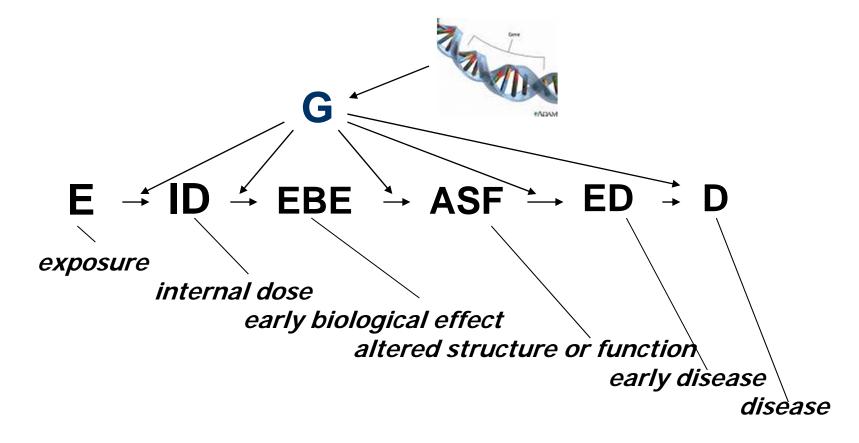
Trends in Five-vear Relative Survival (%)* Rates, US, 1975-2004

Traditional epidemiology

E ______ D

Exposure

Disease


Tobacco

Lung Cancer

Molecular epidemiology

Adding biomarkers allows us to investigate genes and mechanisms

PLCO Trial: Study Design

- Screening Centers: 10
- Coordinating Center Participants: 154,935 Gender: 50:50
- Age: 55-74 years
- Recruitment: 1993-2001
- Screening: 1993-2006
- Baseline questionnaire
- Dietary questionnaires
- Follow-up:

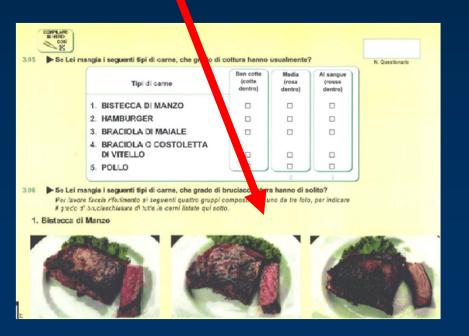
 - Annual surveysMonitoring and QAMortality searches
 - > Interim analyses regularly
- 847 lung cancer cases and 847 controls participate in GWAS

http://prevention.cancer.gov/programs-resources/groups/ed/programs/plco

EAGLE (Environment and Genetics in Lung Cancer Etiology)

BMC Public Health

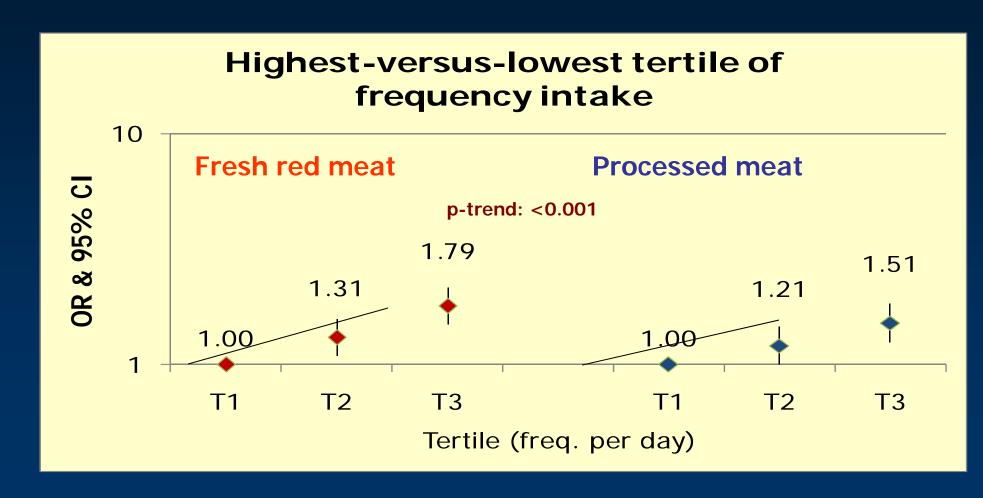
Study protocol


Open Access

Environment And Genetics in Lung cancer Etiology (EAGLE) study:
An integrative population-based case-control study of lung cancer
Maria Teresa Landi*1, Dario Consonni², Melissa Rotunno¹,
Andrew W Bergen¹, Alisa M Goldstein¹, Jay H Lubin¹, Lynn Goldin¹,
Michael Alavanja¹, Glen Morgan³, Amy F Subar³, Ilona Linnoila⁴,
Fabrizio Previdi², Massimo Corno², Maurizia Rubagotti², Barbara Marinelli²,
Benedetta Albetti², Antonio Colombi², Margaret Tucker¹,
Sholom Wacholder¹, Angela C Pesatori†², Neil E Caporaso†¹ and Pier
Alberto Bertazzi†²

Example from EAGLE: molecular epidemiology approach

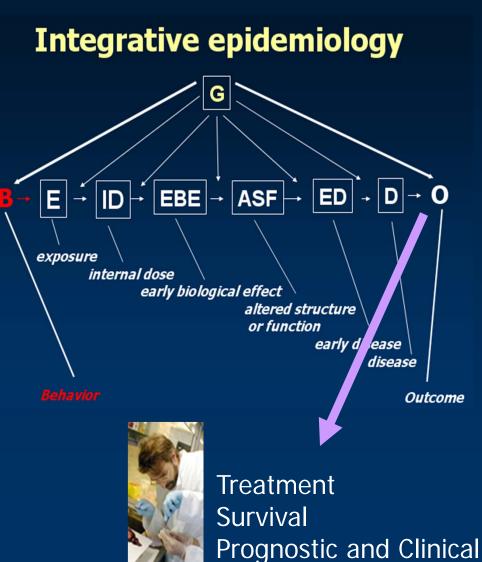
Epidemiology 'doneness module'



Biospecimens

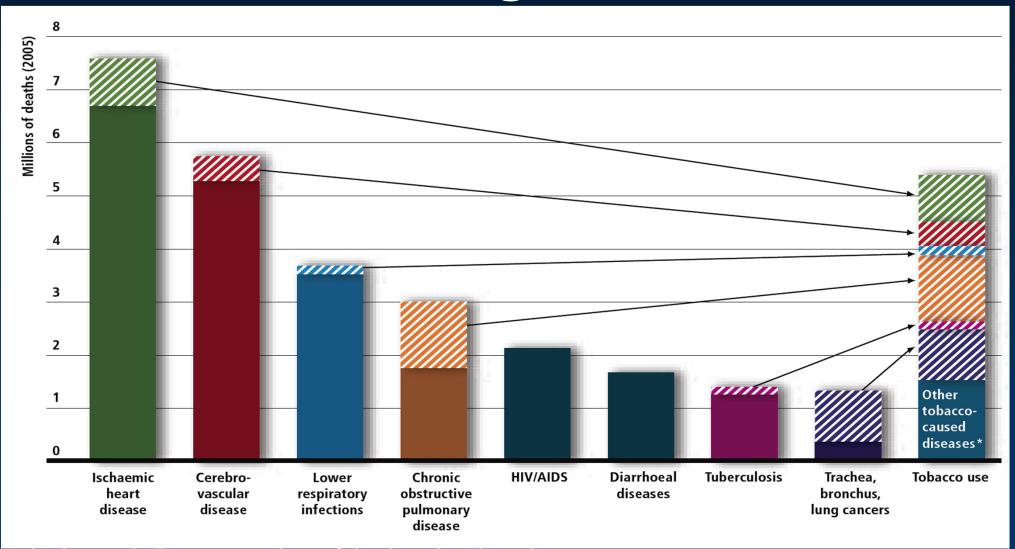
Higher frequency of fresh red and processed meat intake **increased** lung cancer risks

Lam et al, 2009, Cancer Res.

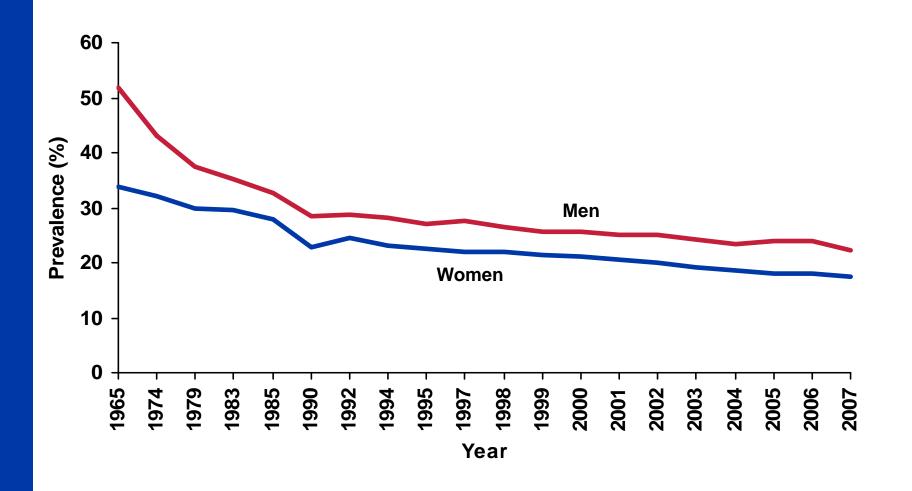

A Population Perspective on Lung Cancer and Smoking

- Descriptive Epidemiology
- Molecular Epidemiology
- Integrative Epidemiology
- Genomics
 - Smoking
 - Lung Cancer
- Importance of Key Subgroups
- Summary

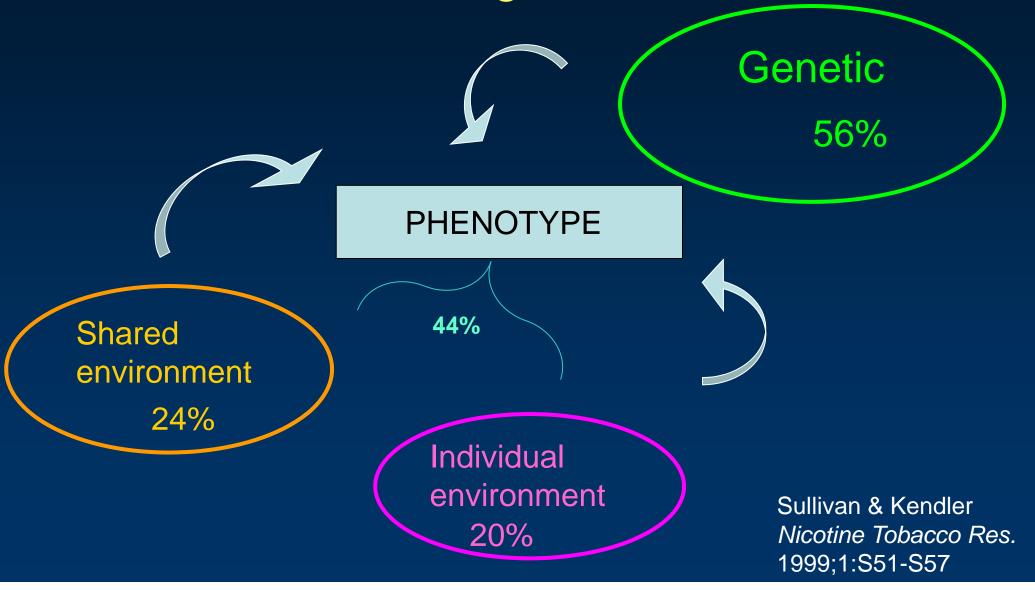
Instruments


Fagerstrom Nicotine Dependency
DSM-IV Nicotine Dependency
Hospital Anxiety and Depression Scale
Eysenck Personality Inventory
CESD- Depression
Attention Deficit Inventory
Attitudes and Knowledge about Smoking
Intention to Quit Smoking

A Population Perspective on Lung Cancer and Smoking


- Descriptive Epidemiology
- Molecular Epidemiology
- Integrative Epidemiology
- Genomics
 - Smoking
 - Lung Cancer
- Key Subgroups
- Summary

Tobacco Is a Risk Factor for 6 of the World's 8 Leading Causes of Death


Hatched areas indicate proportions of deaths related to tobacco use

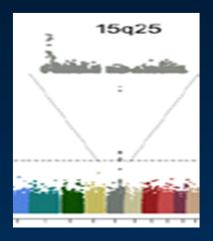
Trends in Cigarette Smoking Prevalence* (%), by Sex, Adults 18 and Older, US, 1965-2007

^{*}Redesign of survey in 1997 may affect trends. Source: National Health Interview Survey, 1965-2007, National Center for Health Statistics, Centers for Disease Control and Prevention, 2008.

Strong and consistent evidence for a genetic contribution to smoking from twin studies...

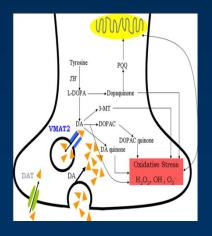
Smoking GWAS, 2 cohort studies

Prostate, Lung, Colon Ovary 2,289 male, Caucasian


Nurses Health Professional Study (NHS)

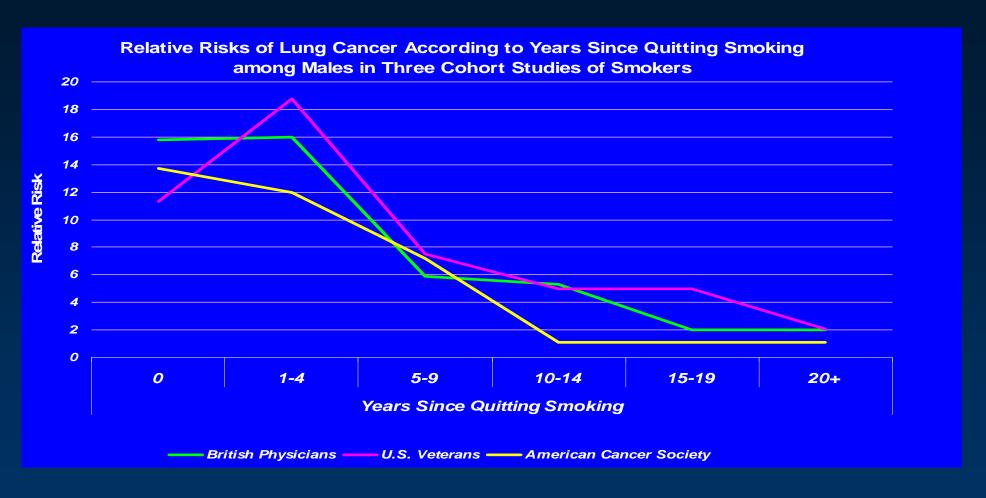
2,282 female, Caucasian

Illumina HumanHap 550K



2 loci are prominent....

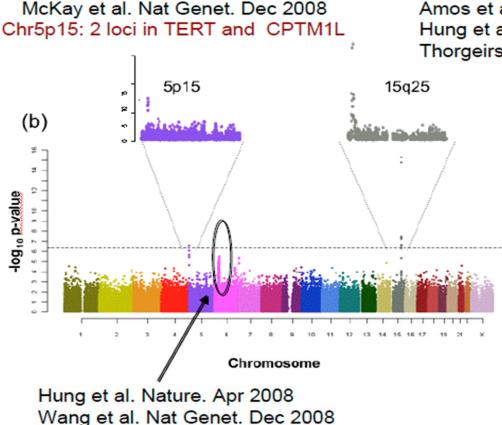
Nicotinic receptor Evidence: very strong


→ Varenicline (Chantix)

Dopamine pathway Evidence: requires confirmation

→ Buproprion

Lung cancer rate drops after smoking cessation but...


....currently most lung cancer in the United States is diagnosed in former smokers!!!

Lung Cancer GWAS

	N. SUBJ Cases	ECTS Controls	LOC	DESIGN	CHIP
NCI Studies					
EAGLE	1,920	1,979	Italy	Pop c/c	550
ATBC	1,732	1,271	Finland	Cohort	610/550
PLCO	1,390	1,924	USA	Cohort	550/610/317+240S
CPS-II	697	674	USA	Cohort	610/1M/550
NCI TOTAL	5,739	5,848			
Meta-analysis					
UK	1,987	1,438	ICR Sut	Hosp cases Birth cohort cont	550
Central Europe	1,837	1,438	East Eur	MC c/c	300-370duo
Texas	1,154	1,137	USA	Hosp c/c	317
Iceland	719	6,030	Iceland	Pop c/c	550
HCF Germany	506	480	Germany	Pop c/c, age<50	550
CARET	397	393	USA	Clin Trial	370duo
HUNT2/Tromso	394	382	Norway	Hosp c/c	370duo
Canada	332	505	Toronto	c/c	317
France	135	146	Paris+	Hosp c/c	317
Estonia	109	875	Estonia	hosp c/c	317/370duo
META TOTAL	7,561	13,818			
GRAND TOTAL	13,300	19,666			

Lung and Smoking GWAS to date

Three implicated loci on chromosome 5, 6 and 15. Chr15q25 (nicotinic receptor) implicated in smoking.

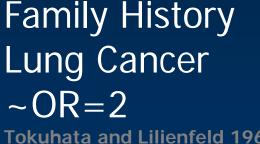
Chr6p21: region of about 1Mb containing HLA

genes

Amos et al. Nat. Genet. April 2008 Hung et al. Nature. Apr 2008 Thorgeirsson et al. Nature. April 2008

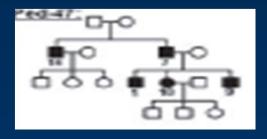
Chr15q25: nicotinic acetylcholine receptor genes (CHRNA5, CHRNA3)

Selected variants:

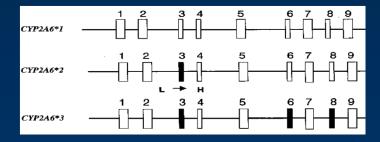

			Caucasian	Asian
chr15q25	CHRNA5	rs16969968	X	X
	Loc123688	rs8034191	x	X
	CHRNA3	rs12914385		×
	CHRNA3	rs1317286		×
_	Loc123688	rs931794		X
chr5p15	TERT	rs402710	X	X
	CLPTM1L	rs2736100	X	X
chr6p	HLA	rs2256543	X	
		rs4324798	X	

10----

A personal journey in the NCI intramural program.....

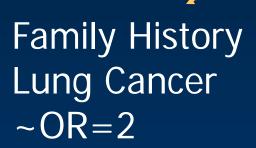

Goal to identify hereditary component of lung cancer

3 lines of evidence available in the late 1980's



Tokuhata and Lilienfeld 1963

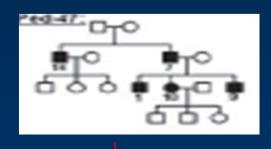
Pedigrees


Pharmacogenetics

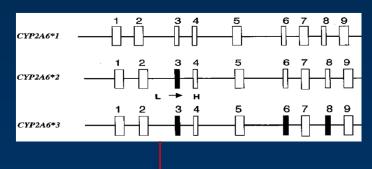
A personal journey in the NCI intramural program.....

Goal to identify hereditary component of lung cancer

3 lines of evidence available in the 1980's

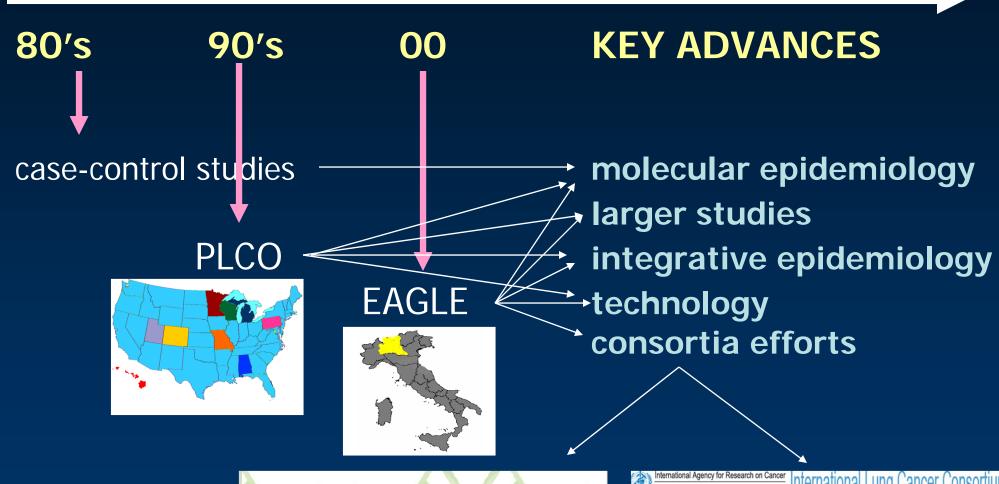


Tokuhata and Lilienfeld 1963


Amos et al. 2008

Pedigrees

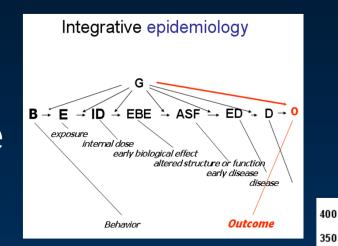
Linkage studies
Bailey-Wilson et al, 2004

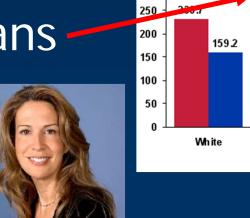

Pharmacogenetics

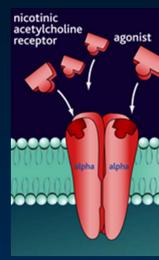
Pharmacgenomics

Caporaso et al, 2008

Sustained effort in the intramural program over time led to breakthroughs......




Priorities from Population Perspective:


1. Genomics of Lung Cancer/Smoking

2. Genomics of Outcome

- 3. Key subgroup: African Americans
- 4. Key subgroup: Non- smokers

313.0

African