A personal journey in the NCI intramural program.....

Goal to identify hereditary component of lung cancer

3 lines of evidence available in the late 1980's

- Family History
- Lung Cancer
- ~OR=2

Tokuhata and Lilienfeld 1983

- Pedigrees

- Pharmacogenetics
A Population Perspective on Lung Cancer and Smoking

- Descriptive Epidemiology
- Molecular Epidemiology
- Integrative Epidemiology
- Genomics
 - Smoking
 - Lung Cancer
- Importance of Key Subgroups
- Summary
A Population Perspective on Lung Cancer and Smoking

- Descriptive Epidemiology
- Molecular Epidemiology
- Integrative Epidemiology
- Genomics
 - Smoking
 - Lung Cancer
- Key Subgroups
- Summary
The lung cancer challenge....

1- Drives overall cancer mortality in the US and worldwide
2- Treatment and screening pose challenges
3- Lung cancer is paradigm for genetics of complex disease
4- Clearest example of environment and gene in cancer
5- The clearest example of a genetically influenced behavior associated with the leading public health problem in the world

2009 Estimated US Cancer Deaths*

<table>
<thead>
<tr>
<th>Site</th>
<th>Men 292,540</th>
<th>Women 269,800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung & bronchus</td>
<td>30%</td>
<td>26%</td>
</tr>
<tr>
<td>Prostate</td>
<td>9%</td>
<td>15%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>Pancreas</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>4%</td>
<td>5%</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Esophagus</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
<td>3%</td>
<td>25%</td>
</tr>
<tr>
<td>All other sites</td>
<td>25%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Trends in Five-year Relative Survival (%) * Rates, US, 1975-2004

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All sites</td>
<td>50</td>
<td>54</td>
<td>66</td>
</tr>
<tr>
<td>Breast (female)</td>
<td>75</td>
<td>79</td>
<td>89</td>
</tr>
<tr>
<td>Colon</td>
<td>52</td>
<td>59</td>
<td>65</td>
</tr>
<tr>
<td>Leukemia</td>
<td>35</td>
<td>42</td>
<td>51</td>
</tr>
<tr>
<td>Lung and bronchus</td>
<td>13</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>Melanoma</td>
<td>82</td>
<td>87</td>
<td>92</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>48</td>
<td>53</td>
<td>65</td>
</tr>
<tr>
<td>Ovary</td>
<td>37</td>
<td>40</td>
<td>46</td>
</tr>
<tr>
<td>Pancreas</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Prostate</td>
<td>69</td>
<td>76</td>
<td>99</td>
</tr>
<tr>
<td>Rectum</td>
<td>49</td>
<td>57</td>
<td>67</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>74</td>
<td>78</td>
<td>81</td>
</tr>
</tbody>
</table>
Traditional epidemiology

E → D

Exposure Disease

Tobacco Lung Cancer
Molecular epidemiology

Adding biomarkers allows us to investigate genes and mechanisms.
PLCO Trial: Study Design

- Screening Centers: 10
- Coordinating Center
- Participants: 154,935
- Gender: 50:50
- Age: 55-74 years
- Recruitment: 1993-2001
- Screening: 1993-2006
- Baseline questionnaire
- Dietary questionnaires
- Follow-up:
 - Annual surveys
 - Monitoring and QA
 - Mortality searches
 - Interim analyses regularly
- 847 lung cancer cases and 847 controls participate in GWAS

http://prevention.cancer.gov/programs-resources/groups/ed/programs/plco
EAGLE (Environment and Genetics in Lung Cancer Etiology)

Study protocol
Environment And Genetics in Lung cancer Etiology (EAGLE) study: An integrative population-based case-control study of lung cancer
Maria Teresa Landi¹, Dario Consonni², Melissa Rotunno¹, Andrew W Bergen¹, Alisa M Goldstein¹, Jay H Lubin¹, Lynn Goldin¹, Michael Alavanja¹, Glen Morgan³, Amy F Subar³, Ilona Linnoila⁴, Fabrizio Previdi², Massimo Corno², Maurizia Rubagotti², Barbara Marinelli², Benedetta Albetti², Antonio Colombi², Margaret Tucker¹, Sholom Wacholder¹, Angela C Pesatori¹, Neil E Caporaso¹ and Pier Alberto Bertazzi¹²
Example from EAGLE: molecular epidemiology approach

Epidemiology
‘doneness module’

Biospecimens
Higher frequency of fresh red and processed meat intake increased lung cancer risks

Lam et al, 2009, Cancer Res.
A Population Perspective on Lung Cancer and Smoking

- Descriptive Epidemiology
- Molecular Epidemiology
- Integrative Epidemiology
- Genomics
 - Smoking
 - Lung Cancer
- Importance of Key Subgroups
- Summary
Instruments

- Fagerstrom Nicotine Dependency
- DSM-IV Nicotine Dependency
- Hospital Anxiety and Depression Scale
- Eysenck Personality Inventory
- CESD- Depression
- Attention Deficit Inventory
- Attitudes and Knowledge about Smoking
- Intention to Quit Smoking

Integrative epidemiology

- Exposure
- Internal dose
- Early biological effect
- Altered structure or function
- Early disease
- Disease
- Outcome

Behavior

Treatment

Survival

Prognostic and Clinical
A Population Perspective on Lung Cancer and Smoking

- Descriptive Epidemiology
- Molecular Epidemiology
- Integrative Epidemiology
- Genomics
 - Smoking
 - Lung Cancer
- Key Subgroups
- Summary
Tobacco Is a Risk Factor for 6 of the World’s 8 Leading Causes of Death

Hatched areas indicate proportions of deaths related to tobacco use.
Trends in Cigarette Smoking Prevalence* (%), by Sex, Adults 18 and Older, US, 1965-2007

*Redesign of survey in 1997 may affect trends.

Strong and consistent evidence for a genetic contribution to smoking from twin studies…

- Genetic 56%
- Shared environment 24%
- Individual environment 20%

Sullivan & Kendler
Nicotine Tobacco Res.
1999;1:S51-S57
Smoking GWAS, 2 cohort studies

Prostate, Lung, Colon Ovary
2,289 male, Caucasian

Nurses Health Professional Study (NHS)
2,282 female, Caucasian

Illumina HumanHap 550K

2 loci are prominent...

Nicotinic receptor
Evidence: very strong

Dopamine pathway
Evidence: requires confirmation

Varenicline (Chantix)
Buproprion

Caporaso et al, 2009
Lung cancer rate drops after smoking cessation but...

...currently most lung cancer in the United States is diagnosed in former smokers!!!
Lung Cancer GWAS

<table>
<thead>
<tr>
<th>Study/Sample</th>
<th>N. SUBJECTS</th>
<th>LOC</th>
<th>DESIGN</th>
<th>CHIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCI Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAGLE</td>
<td>1,920</td>
<td>Italy</td>
<td>Pop c/c</td>
<td>550</td>
</tr>
<tr>
<td>ATBC</td>
<td>1,732</td>
<td>Finland</td>
<td>Cohort</td>
<td>610/550</td>
</tr>
<tr>
<td>PLCO</td>
<td>1,390</td>
<td>USA</td>
<td>Cohort</td>
<td>550/610/317+240S</td>
</tr>
<tr>
<td>CPS-II</td>
<td>697</td>
<td>USA</td>
<td>Cohort</td>
<td>610/1M/550</td>
</tr>
<tr>
<td>NCI TOTAL</td>
<td>5,739</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meta-analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>1,987</td>
<td>ICR Sut</td>
<td>Hosp cases</td>
<td>550</td>
</tr>
<tr>
<td>Central Europe</td>
<td>1,837</td>
<td>East Eur</td>
<td>MC c/c</td>
<td>300-370duo</td>
</tr>
<tr>
<td>Texas</td>
<td>1,154</td>
<td>USA</td>
<td>Hosp c/c</td>
<td>317</td>
</tr>
<tr>
<td>Iceland</td>
<td>719</td>
<td>Iceland</td>
<td>Pop c/c</td>
<td>550</td>
</tr>
<tr>
<td>HCF Germany</td>
<td>506</td>
<td>Germany</td>
<td>Pop c/c, age<50</td>
<td>550</td>
</tr>
<tr>
<td>CARET</td>
<td>397</td>
<td>USA</td>
<td>Clin Trial</td>
<td>370duo</td>
</tr>
<tr>
<td>HUNT2/Tromso</td>
<td>394</td>
<td>Norway</td>
<td>Hosp c/c</td>
<td>370duo</td>
</tr>
<tr>
<td>Canada</td>
<td>332</td>
<td>Toronto</td>
<td>c/c</td>
<td>317</td>
</tr>
<tr>
<td>France</td>
<td>135</td>
<td>Paris+</td>
<td>Hosp c/c</td>
<td>317</td>
</tr>
<tr>
<td>Estonia</td>
<td>109</td>
<td>Estonia</td>
<td>hosp c/c</td>
<td>317/370duo</td>
</tr>
<tr>
<td>META TOTAL</td>
<td>7,561</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td>13,300</td>
<td></td>
<td></td>
<td>19,666</td>
</tr>
</tbody>
</table>
Lung and Smoking GWAS to date

- Three implicated loci on chromosome 5, 6 and 15.
- Chr15q25 (nicotinic receptor) implicated in smoking

Selected variants:

<table>
<thead>
<tr>
<th>Chr15q25</th>
<th>CHRNA5</th>
<th>Caucasian</th>
<th>Asian</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs16969968</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Loc123688</td>
<td>rs8034191</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>CHRNA3</td>
<td>rs12914385</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>CHRNA3</td>
<td>rs1317286</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Loc123688</td>
<td>rs931794</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>chr5p15</th>
<th>TERT</th>
<th>Caucasian</th>
<th>Asian</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs402710</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>CLPTM1L</td>
<td>rs2736100</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>chr6p</th>
<th>HLA</th>
<th>Caucasian</th>
<th>Asian</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2256543</td>
<td>rs4324798</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
A personal journey in the NCI intramural program....

Goal to identify hereditary component of lung cancer

3 lines of evidence available in the late 1980’s

- Family History
- Pedigrees
- Pharmacogenetics

Lung Cancer
~OR=2
Tokuhata and Lilienfeld 1963
A personal journey in the NCI intramural program....

Goal to identify hereditary component of lung cancer

3 lines of evidence available in the 1980's

- Family History
- Pedigrees
- Pharmacogenetics

- Lung Cancer
 - OR=2
 - Tokuhata and Lilienfeld 1963

Linkage studies
- Bailey-Wilson et al, 2004

Pharmacogenomics
- Caporaso et al, 2008
Sustained effort in the intramural program over time led to breakthroughs......

80’s 90’s 00 KEY ADVANCES

case-control studies

80’s 90’s 00

PLCO

EAGLE

molecular epidemiology
larger studies
integrative epidemiology
technology
consortia efforts
Priorities from Population Perspective:

1. Genomics of Lung Cancer/Smoking

2. Genomics of Outcome

3. Key subgroup: African Americans

4. Key subgroup: Non-smokers