Current Cancer Drug Development

.....at an average cost of \$1B per drug

Work Horse Mouse in Cancer Drug Development

(xenograft: cells from one species transplanted into another)

in cancer drug testing: subcutaneous injection of established human cancer cell lines into immunocompromized mice

"We've cured plenty of cancers in mice, but only very few in humans.... The mouse is not a good model"

many reasonable people

Cancer is a Dynamic and Evolutionary Process

Mutant Mice in Integrated Disease Analyses: Two Decades of Development

Rb Pathway Commonly Aberrant in Human Cancers

A Tool for Cell-Specific Inactivation of pRb Function

Cancer Evolution as Deciphered in GEM

aberrant signals to proliferate

common among most cell types

evolutionary selection for impaired cell death

Oľ

cell type/tissue specific

evolution/ selection

Cancer models

Choroid plexus
Mammary/breast
Prostate
Ovarian
Astrocytoma

High-grade Astrocytoma

Astrocytoma Model Engineering

mouse genotype

X GFAP-CreER[™] ↓ + 4-OHTam (K. McCarthy UNC)

*adult astrocyte genotype

Cancerassociated

Qian Zhang

Inducible Astrocytoma Model Assessment

Inducible Astrocytoma Models

GEM Astrocytoma: Human Disease Properties

T121;K-Ras^{G12D} T121;K-Ras^{G12D};Pten+/- T121;K-Ras^{G12D};Pten-/-

Qian Zhang, Chao Yin R. Miller; D. Louis

Malignant Vessels in GEM-GBM

Scheme for Integrated Disease Analysis

GEM in Clinical Translation

In Vivo Pathway Analyses:

What are the *Critical* Cause-Effect Relationships *in the Context of Natural Microenvironment*?

Inducible Astrocytoma Models

Ras activates multiple effector signaling pathways

Pathways to Astrocytoma

Pathways to Astrocytoma

In Vitro Pathway Analyses:

What are the likely *Mechanistic* Cause-Effect Relationships *of Pathways Perturbed In Vivo*?

What are the *Critical Therapeutic Targets*?

Scheme for Integrated Disease Analysis

Scheme for Integrated Disease Analysis

Orthotopic Syngeneic Transplant Model for "Rapid" Pathway/Microenvironment Assessment

Ryan Bash, Natalie Karpinich, Ryan Miller

Scheme for Integrated Disease Analysis

High-grade Astrocytoma

EGFR Signal Activation via Ras Activation

Targeting EGFR in Cancer

Forbes

adapted from Ciardiello & Tortora, 2002; courtesy of David Threadgill (UNC)

EGFR Inactivation INCREASES Severity

 T_{121} ;K-Ras^{G12D};EGFR-/-

Q. Zhang, D. Threadgill

Pathways to Astrocytoma

Mutations in the Epidermal Growth Factor Receptor and in KRAS Are Predictive and Prognostic Indicators in Patients With Non–Small-Cell Lung Cancer Treated With Chemotherapy Alone and in Combination With Erlotinib

David A. Eberhard, Bruce E. Johnson, Lukas C. Amler, Audrey D. Goddard, Sherry L. Heldens, Roy S. Herbst, William L. Ince, Pasi A. Jänne, Thomas Januario, David H. Johnson, Pam Klein, Vincent A. Miller, Michael A. Ostland, David A. Ramies, Dragan Sebisanovic, Jeremy A. Stinson, Yu R. Zhang, Somasekar Seshagiri, and Kenneth J. Hillan

Disease Models at the Frontiers of Basic and Clinical Discovery

Why Have Spontaneous Cancer Models *not* been Incorporated into Drug Discovery Preclinical Assessment?

DuPont

FDA

expensive compared to xenografts

old dogs and new tricks

academic-private technology transfer

requires major expertise in cancer mechanisms, pathways, GEMM, genetics, drug development and clinical care

requires uncommon research culture

NCI-CAPR Center for Advanced Preclinical Studies

....to facilitate the improvement of preclinical assessment and clinical trial design for effective cancer diagnosis and treatment

Projected Interactome
a new paradigm for
translational science

NCI-CAPR Center for Advanced Preclinical Studies

- •Predict possible outcomes/patient stratification to inform clinical trial design
 - Therapeutic target discovery and validation
 - •Biomarker/molecular signature identification via comparative (human, canine, murine) analyses
 - Cancer model and "tool" mouse development for UNMET needs.
 - Annotated tissue/fluids/nucleic acids banks
 - Consultation.
 - Integrated preclinical/clinical LIMS development
 - •Develop effective preclinical testing strategies in murine cancer models (GEM, humanized orthotopic xenografts)
- •Comparative assessment of predictive power among murine cancer models
 - •Develop molecular/cellular imaging strategies for therapeutic/diagnostic assessment
- Develop technologies to overcome barriers to scale up and throughput while limiting sacrifice in predictive power.

