
Glioblastoma, the disease

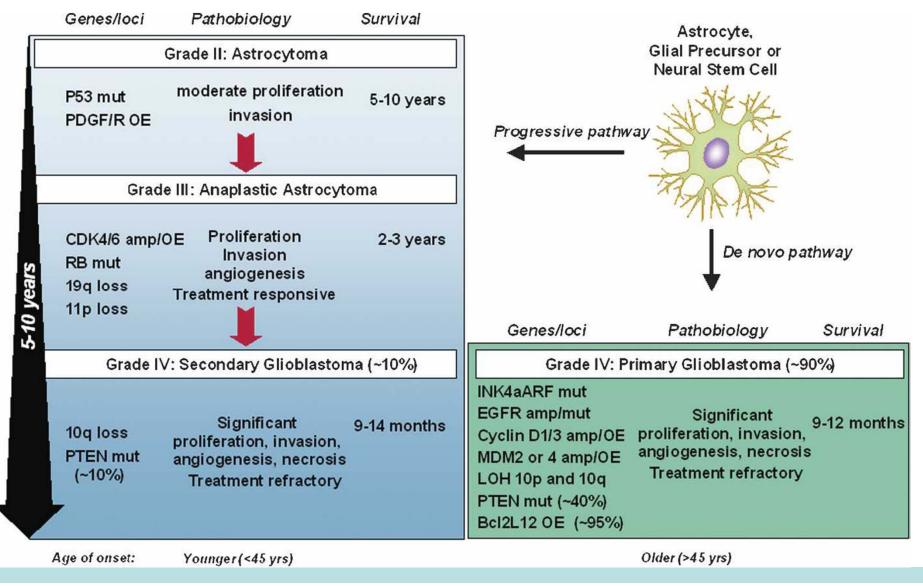
Lynda Chin, MD Dana-Farber Cancer Institute Harvard Medical School

Glioma: scope of the problem

- Primary brain tumors
 - 7 per 100,000 worldwide
- Most common is gliomas:
 - astrocytoma, oligodendrogliomas or mixed
- WHO grade IV = glioblastoma
 - Median survival: 9 to 12 months
 - 2-years survival: 4-15%
- In US:
 - 17,000 new cases per year,
 - 12,000 deaths per year
- Disproportionate life years loss
 - ~2% of all primary tumors,
 - 7% of years of life lost from cancers before age 70

Average Years of Life Lost Per Person Dying of Cancer All Races, Both Sexes, 2003

Statistics still hold, 15 years later.... The Cancer Genome Atlas


Class	Characteristics		Median Survival (Months)	2-Year Survival (%)
I	AA	<50 yr, normal mental status	58.6	76
П	AA	>50 yr, KPS 70-100, >3 mo time to first symptom	37.4	68
ш	AA GBM	<50 yr, abnormal mental status <50 yr, KPS 90-100	17.9	35
IV	AA GBM GBM	≥50 yr, ≤3 mo time from first symptom <50 yr, KPS <90 KPS 70-100, >partial resection, "work" neurological functional status	11.1	15
V	GBM	≥50 yr, KPS 70-100, ≥partial resection, "home" or "hospital" neurological function status	8.9	6
	GBM	>50 yr, KPS 70-100 biopsy only, received >54.4Gy; or ≥50 yr, KPS <70, normal mental status		
VI	GBM	≥50 yr, KPS 70-100 biopsy only, received ≤54.4Gy; or ≥50 yr, KPS <70, abnormal mental status	4.6	4

RTOG Recursive Partitioning Analysis of Prognostic Factor by Curran WJ Jr. et al. *J Natl Cancer Inst.* **1993**; 85:704-710.

GBM: two paths to a common endpoint

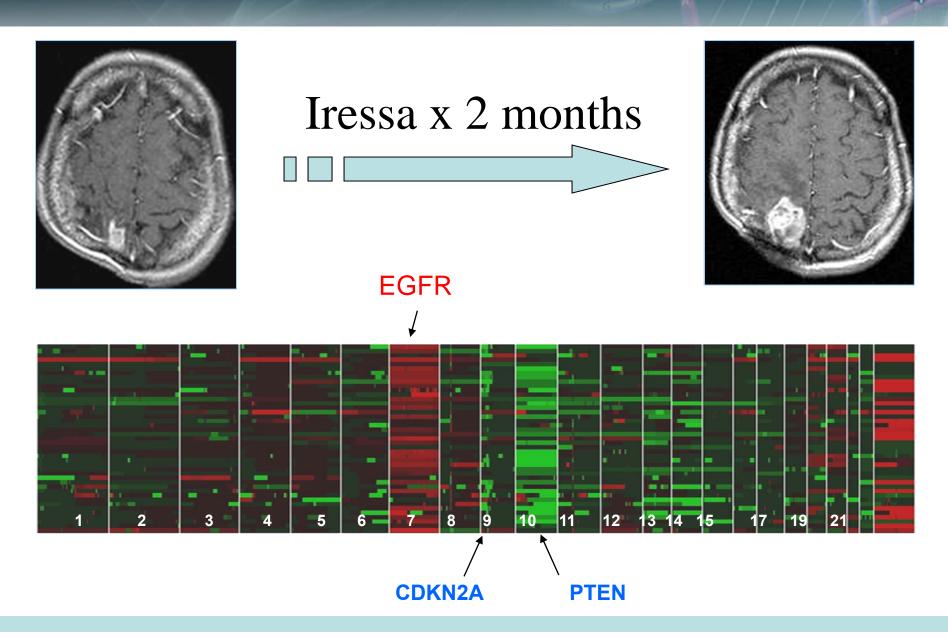
Furnari et al G&D 2007

The Cancer Genome Atlas 🖶

Genomes of Primary and Secondary GBM

- Subclass of primary GBM has not been defined on the genomic level
- Secondary GBM can be stratified into two distinct subclasses, with different Time-To-Progression

Maher et al Can Res 2006

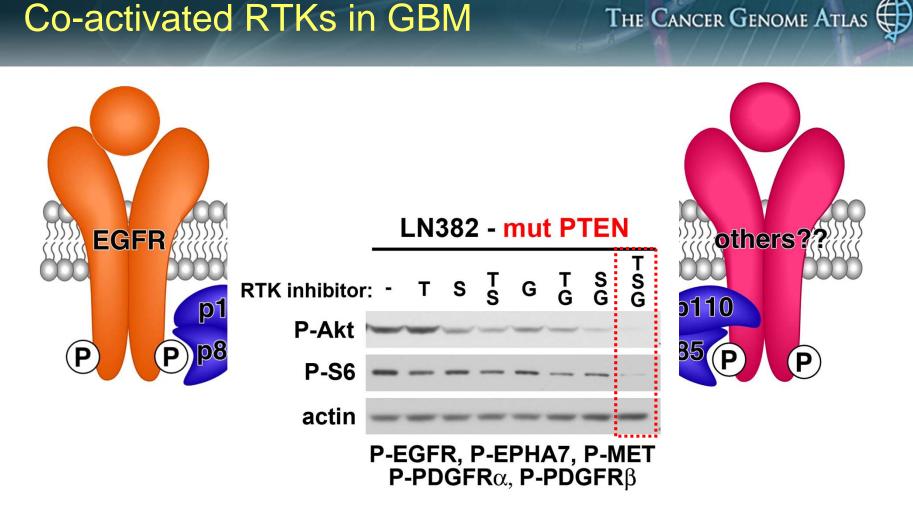

EGFR, a signature oncogene

- Amplified in ~43% of GBM
- 20-30% with EGFRvIII (exon 2-7 deletion):

- constitutively active receptor
- Sugawa et al PNAS 1990
- 14% oncogenic missense mutations in the extracellular domain of EGFR in glioblastoma
 Mellinghoff et al., PLoS Med., 2006
- Rational target of TKI against EGFR?

Lack of EGFR TKI efficacy

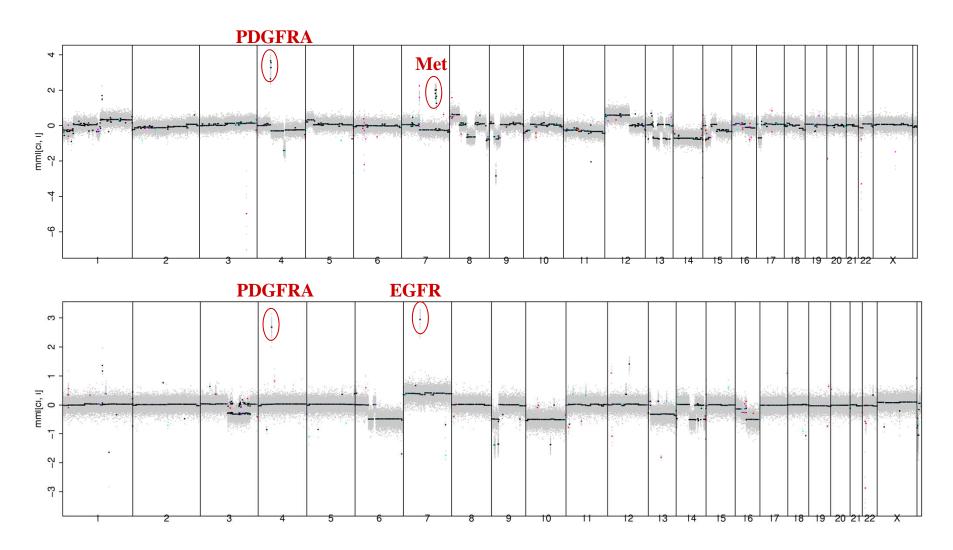
The Cancer Genome Atlas



Molecular determinants of therapeutic responses

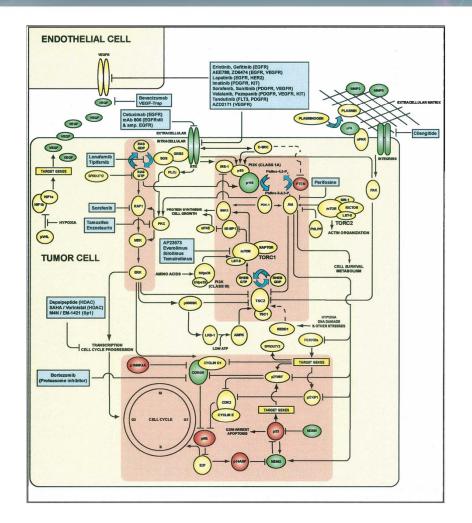
4

UCLA dataset	Responders	Non-Responders	P	Odds	95%
	(n=7)	(n=19)	Value	Ratio	C.I.
EGFRvIII expression	83% (6/7)	32% (6/19)	0.03	13	1.3-133
PTEN expression	100% (7/7)	32% (6/19)	0.005	NC*	NC*
EGFRvIII/PTEN coexpression***	83% (6/7)	11% (2/19)	<0.001	51	3.9-669
UCSF dataset *	Responders	Non-Responders	Р	Odds	95%
	(n=8)	(n=25)	Value	Ratio	C.I.
EGFRvIII expression	87.5% (7/8)	44% (11/25)	0.05	8.9	0.95-84
PTEN expression	62.5% (5/8)	16% (4/25)	0.02	8.8	1.5-52
EGFRVIII/PTEN coexpression****	62.5% (5/8)	4% (1/25)	0.001	40	3.4-468


- PTEN status dictates response to EGFR tyrosinse kinase inhibitor in GBM with EGFRvIII mutation
- However, responses are not durable...

- Converge to sustain the activation of PI3K pathway
- A new therapeutic strategy

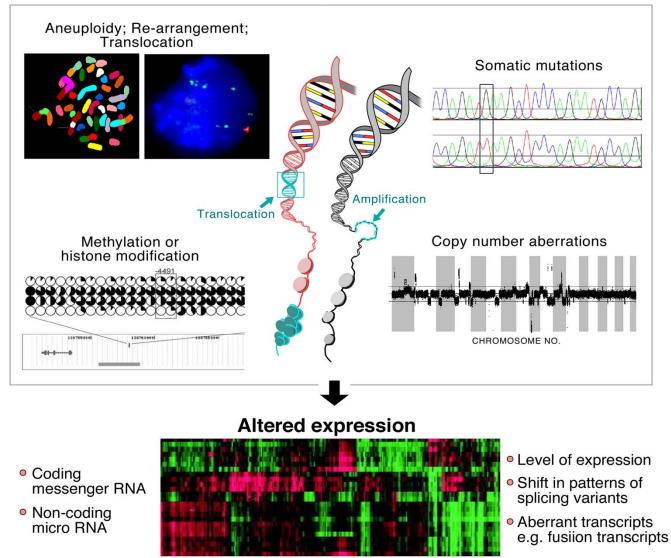
➔ simultaneous inhibition of co-activated RTKs


Co-amplification of RTK in GBM

Cameron Brennan; TCGA

THE CANCER GENOME ATLAS

Furnari et al G&D 2007



Deregulation of complex signaling network, not linear pathway, driven by underlying genetic and epigenetic alterations

Cancer is a disease of the genes The Cancer Genome Atlas

Genomic and Epigenomic Alterations

Chin and Gray, Nature, in press

The Cancer Genes Atlas (TCGA) THE CANCER GENOME ATLAS

- To define the atlas of genomic and epigenomic alterations in GBM, lung and ovarian cancers
- To identify genomic subtypes that can stratify patients for therapies
- To discover predictive or prognostic biomarkers
- To identify rational targets (and combination thereof) for therapeutic intervention
- To improve survival of patients

Update from TCGA

- Generation of multi-dimensional genomic data on clinically annotated GBM and matched normals
- Preliminary integrative analyses of 165 samples
- Disease Working Group to interface with biology and clinical experts
- Reports:
 - Cameron Brennan (MSKCC): Copy number and translocation
 - Joe Gray (LBNL): RNA expression and methylation profiles
 - Rick Wilson (Wash U): Targeted re-sequencing of Phase I genes