Deciphering the genetic barcode of cancer susceptibility using mouse models of astrocytoma, MPNST, and NF1

Karlyne M. Reilly, Ph.D.

Genetic Modifiers of Tumorigenesis Section, Mouse Cancer Genetic Program NCI@Frederick, Frederick, MD

In any population, why do certain individuals develop cancer?

- Diet/Environmental Factors
- Sporadic Events (bad luck!)

Combinatorial effects within a population can give rise to rare cancer

- Diet/Environmental Factors
- Sporadic Events (bad luck!)
- ➡ Understand basic biology of cancer
- Apply what we learn to developing therapy

Cancer is a process of accumulating genetic mutations

Cancer is a process of accumulating genetic mutations

Cancer is a disease of gene alteration

High-penetrance cancer genes

(rare mutations with powerful effects)

e.g. p53, Rb1, APC, Nf1, H-Ras, myc

Nf1;p53cis mouse model of Neurofibromatosis type 1

Low-penetrance modifier genes (common variants with partial effects)

e.g. Pla2g2a, STK15, Ptprj, Sipa1

Imprinted genes/Epigenetic effects (genome modifications inherited from one parent or the other) Evidence in rhabdomyosarcoma, oligodendroglioma, and paraganglioma

The Genetics of Cancer Susceptibility

Apparent "sporadic" cancers may be the result of more complicated genetic "barcodes"

Resistant

Susceptible

Resistant

Susceptible

• These "barcodes" are present before cancer develops, independent of environmental exposures, providing an opportunity for personalized prevention of cancer

Deciphering Susceptibility Codes: Sporadic vs. Familial Cancer vs. Mouse Cancer

Neurofibromatosis type 1

- Autosomal dominant, affecting 1 in 3500
- 100% penetrant, but variable expressivity
- Evidence for modifier genes from twin studies
- Characterized by benign lesions in many different organ systems, including:

 neurofibromas
 optic nerve gliomas (WHO I)
 learning disabilities
 bone fragility
 changes in brain anatomy (MRI)
- Increased risk for malignancies

 -malignant peripheral nerve sheath tumors
 -astrocytomas/glioblastomas (WHO II-IV)
 -pheochromocytomas
 -rhabdomyosarcomas
 -myeloid leukemia
- p53 is mutated in the transformation of neurofibromas into MPNSTs

Glia cell tumors of the central and peripheral nervous systems are increased in Neurofibromatosis type 1 patients

Astrocytes (normal cell)

• Maintain homeostasis in the central nervous system through interactions with neurons, blood vessels, and basement membranes

Astrocytoma/Glioblastoma Multiforme

- The most common malignant tumor of the CNS
- Incidence of 15 in 100,000 in the general population
- Affects 2% of NF1 patients
- The median survival rate for high-grade astrocytoma (glioblastoma) is 0.4 years
- Only 6% of diagnosed high-grade astrocytoma patients live to 3 years post-diagnosis
- Diffusely infiltrating behavior makes surgical resection difficult to impossible
- Mutation of p53 occurs during astrocytoma initiation

Schwann cells (normal cell)

 Insulate electrical currents of axons in the peripheral nervous system

Malignant Peripheral Nerve Sheath Tumor

- Incidence of 1 in 100,000 in the general population
- Affects up to 10% of NF1 patients
- Tumors can infiltrate along nerve tracks and metastasize
- 5-year survival rate has been estimated between 16-52%, depending on degree of resection of tumors, size, and location
- Mutation of p53 occurs during progression of benign tumors to malignancy

The *Nf1;p53cis*, C57BL/6J mouse model of astrocytoma and peripheral nerve sheath tumor

- The average tumor latency is 7 months
- Mutations are maintained by simple Mendelian inheritance
- The p53 pathway is lost and the ras pathway is upregulated at physiologically relevant levels by a single chromosomal loss event
- The genetic background is well defined

The Nf1;p53cis, C57BL/6J mouse model of NF1

malignant astrocytomas/glioblastomas

- 73% mutant mice on C57BL/6J
- modified by 129S4/SvJae and CBA/J
- progeny of mutant moms have increased susceptibility
- F1 analysis shows modifiers on chr 11 near Nf1 and p53

Reilly et al (2004) PNAS 101:13008-13

malignant peripheral nerve sheath tumors

- 65% mutant mice on C57BL/6J
- modified by A/J and DBA/2J
- progeny of mutant dads have increased susceptibility
- backcross mapping shows linkage to chr 15 and 19

Reilly et al (2006) Cancer Res., 66:62-8

Nf1 and *p53* cooperate in tumor suppression

Imprinting on mouse chromosome 11 cooperates with p53 mutation in tumorigenesis

Mapping modifiers of MPNSTs by backcrossing: Polymorphisms in the A/J strain modify tumorigenesis

Inheritance of mutant chromosome 11 affects incidence of sarcomas regardless of strain background.
The A strain confers dominant resistance to sarcomas regardless of inheritance of chromosome 11.

Parents of backcross progeny determine which loci affect susceptibility

Progeny of Nf1;p53cis (B6XA) female X wt B6 male (N=97) vs. Progeny of wt B6 female X Nf1;p53cis (B6XA) male (N=144)

<u>n</u>erve <u>s</u>heath <u>t</u>umor <u>r</u>esistance loci

Karl Broman, John Hopkins University

nstr1 on mouse chromosome 19 and *nstr2* on mouse chromosome 15 control susceptibility to GEM PNSTs

nstr1 and *nstr2* are syntenic with chromosomal regions altered in human MPNSTs

www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=cancerchromosomes

Using Chromosome Substitution Strains to test mechanisms of resistance

Chr 19 (*nstr1*) and Chr 15 (*nstr2*) modifiy PNST susceptibility differently

	N	% GEM PNST	χ² test P value	Median Age w/ GEM PNST (mo)	Mean Age w/ GEM PNST (mo)	T-test P value
NPcis ^{pat} ;CSS-19	30	77%	0.5	5.7	5.9	0.06
NPcis ^{pat} ;CSS-6	19	84%		4.9	4.9	
NPcis ^{mat} ;CSS-15	27	37%	0.03	7.3	7.5	0.24
NPcis ^{mat} ;CSS-8	20	70%		6.8	6.9	

• Nstr2 (chr 15) reduces number of PNSTs, but does not affect latency

• Nstr1 (chr 19) may increase latency of PNSTs, but does not affect penetrance

• Although *NPcis*^{mat};CSS-15 mice develop significantly fewer GEM PNSTs,

they develop significantly more astrocytoma and hematopoietic tumors

A genetic/epigenetic network for susceptibility to peripheral nerve sheath tumors

Using mouse models of cancer to develop new therapies

Generation of cell lines from low-grade astrocytomas

• 14 cells lines of differing tumor grades, sex, and genetic background have been generated thus far by this method

Using the Nf1-/+;p53-/+cis mouse model to investigate a potential anti-astrocytoma therapeutic derived from natural compounds

Schweinfurthin A

In collaboration with the Molecular Targets Development Program

Schweinfurthin A specifically inhibits mouse and human astrocytoma/GBM cell growth

Schweinfurthin A shows differential activity in a screen of the NCI60 cell lines: specificity towards brain tumor cell lines

Mouse and human glioma cells are equally sensitive to Schweinfurthin A

Summary

- Cancer susceptibility is determined by the interaction of high-penetrance cancer genes, low-penetrance cancer genes, and epigenetic effects
- Epistatic and combinatorial effects can mask the genetic component of cancer susceptibility
- Mouse models of cancer and human familial cancer syndromes are useful to dissect the components of cancer susceptibility
- Mouse tumor cell lines are useful surrogates for human cell lines in preclinical drug testing and allow testing in immune-competent animals
- Brain tumor specific therapeutics may provide a new, more effective approach for the treatment of astrocytoma and glioblastoma.

Acknowledgements

Modifiers of Cancer Robert Tuskan Erika Truffer Kristi Fox Michelle Perella

Schweinfurthin A Demir Gürsel

Jessica Hawes Yvette Connell-Albert Jessica Walrath Krishan Kumar

Modifiers of Cancer C. Dahlem Smith

Karl Broman

Shirley Tsang John Diehl David Sun David Munroe

Dagan Loisel Jeremy Ledger Emily Christy Tyler Jacks

Rod Bronson

Schweinfurthin A Tommy Turbyville John Beutler

David Weimer Jeffrey Neighbors