Clues From The Pathway-Driven Approach

Montserrat García-Closas
Division of Cancer Epidemiology and Genetics
Hormonal and Reproductive Epidemiology Branch

December 1, 2006
Overview

- **Breast Cancer:**
 - Case-control and Cohort Breast Cancer Studies
 - Breast Cancer Association Consortium

- **Bladder Cancer:**
 - Spanish Bladder Cancer Study
 - International Consortium of Case-control Studies of Bladder Cancer
Breast Cancer Etiology

High penetrance genes:
- BRCA1, BRCA2, TP53, STK11, PTEN

Environmental exposures:
- Reproductive history
- Exogenous hormones
- Alcohol intake
- Obesity
- Physical activity

“Sporadic” (95%)

Familial (5%)

Low penetrance genes:
- CHEK2, ATM, others?
Pathways of Interest in Breast Cancer

• Established or possible risk factors:
 • Hormone biosynthesis, metabolism, and action
 • Obesity
 • Alcohol metabolism
 • Carcinogen metabolism
 • Inflammation

• Carcinogenic processes:
 • DNA repair, cell cycle control, and apoptosis
 • Cell signaling pathways
 • Telomere length

• Gene expression studies

• Somatic mutations
Breast Cancer Association Consortium

20 studies:
28,000 cases
30,000 controls
Breast Cancer Association Consortium: Findings to Date

20 candidate SNPs (published + unpublished)

11 SNPs

No association
ADH1C I350V
AURKA F31I
XRCC1 R399Q
LIG4 D501D
BRCA2 N372H
XRCC3 T241M
XRCC3 5'UTR
XRCC3 IVS5
XRCC2 R188H
ERCC2 D312N
TP53 R72P
BCAC, JNCI (2006)

9 SNPs

Some evidence

Follow-up

9-15 studies: 10,783 cases, 18,312 controls

No association
SOD2 V16A
ADH1B 3'UTR
CDK1A S31R
ICAM5 V301I
NUMA1 A794G

Moderate
IGFBP3 -202 (p=0.05)
ATM S49C (p=0.09)

Reasonable
TGFB1 L10P (P=0.0001)
(ER-, PR- tumors)

Strong
CASP8 D320H (P=1x10^-7)

Cox/Dunning/Garcia-Closas for the BCAC (Under Review)
Caspase 8 (CASP8) D302H Variant Decreases Breast Cancer Risk

Overall OR (95%CI) 0.88 (0.84, 0.92) P=1x10^{-7}

Cox A/Dunning A/Garcia-Closas M* for the BCAC (Under Review)
* in alphabetical order

Studies (sorted by size)
- Kuopio
- Helsinki
- CNIO
- LSHTM
- USRTS
- ABCFS
- GENICA
- HBCS
- Mayo_Clinic
- Sheffield
- CAHRES
- PBCS
- SEARCH

Total Sample Size
- 16,423 cases
- 17,109 controls

Histidine (H) allele in 13% of controls
Caspase 8 and Breast Cancer: Plausibility and Significance of Findings

• *CASP8* D302H is the first common variant with convincing evidence of an association with breast cancer.

• Caspase 8 is a critical initiator of death receptor mediated apoptosis.

• Follow-up:
 • Fine mapping to dissect genetic variants in *CASP8*.
 • Functional significance of variants.
Bladder Cancer

Excellent model to evaluate genetic susceptibility and gene-environment interactions:

• Relatively homogenous histology.

• Well-known non-genetic causes:
 – Tobacco smoking
 – Occupational exposure to aromatic amines

• Good understanding of genetic variation in carcinogen metabolism.

• Familial association not yet explained.
Bladder Cancer Incidence Rates

Source: Globocan 2002
Spanish Bladder Cancer Study

Hospital-based case-control study in 5 areas of Spain (1998-2001)

- 1219 cases (85% of eligibles)
- 1271 controls (88% of eligibles)

Why Spain?
- Higher incidence rates
- Higher prevalence of tobacco and occupational exposures
- Higher participation rates, lower cost
Candidate Pathways for Bladder Cancer

- **Carcinogen metabolism**
 - **Detoxification**
 - **Activation**
 - **DNA damage**
 - **Oxidative damage**

- **Cell-cycle control**
 - **DNA repair**
 - **Apoptosis**
 - **Cell death**

- **VEGF**
 - **Malignant cell**
 - **Malignant tumor**
 - **Tumor growth**

Bladder: tumor stages

- **Normal cell**
- **Malignant cell**
- **Malignant tumor**

Key Genes: NAT2, GSTM1
NAT2 and GSTM1: Strong Candidate Genes for Bladder Cancer

• Metabolism of bladder carcinogens.

• Meta-analyses of previous studies:
 • Suggested associations with bladder cancer risk
 • Relatively small studies (23 to 374 cases)
 • Concerns about publication bias and heterogeneity

• Interactions with cigarette smoking:
 • Strong biological rationale for NAT2
NAT Slow Acetylation and GSTM1 Null Genotypes Increase Bladder Cancer Risk

Spanish Bladder Cancer Study

<table>
<thead>
<tr>
<th>Phenotypes*</th>
<th>Cases</th>
<th>Controls</th>
<th>OR</th>
<th>95%CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapid/Intermediate</td>
<td>406</td>
<td>493</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Slow</td>
<td>728</td>
<td>637</td>
<td>1.4</td>
<td>(1.2-1.7)</td>
<td>0.0002</td>
</tr>
<tr>
<td>GSTM1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>786</td>
<td>561</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Null</td>
<td>716</td>
<td>571</td>
<td>1.7</td>
<td>(1.4-2.0)</td>
<td>1x10^-8</td>
</tr>
</tbody>
</table>

* Inferred from genotype data

Stronger Effect of Smoking on Bladder Cancer Risk for NAT2 Slow Acetylators

Large-scale Evaluation of Candidate Genes for Bladder Cancer

• 1,433 SNPs within or near 386 genes.

• Most notable finding for a 5’UTR variant in the vascular endothelial growth factor (VEGF) gene:
 • Major role in angiogenesis.
 • VEGF tumor and urinary levels related to bladder cancer recurrence and progression.
 • Variants associated with VEGF plasma levels, promoter activity, bladder cancer aggressiveness.
Detailed Characterization of VEGF Variants in the Spanish Bladder Study

<table>
<thead>
<tr>
<th>Location</th>
<th>MAF</th>
<th>Heterozygous OR (95%CI)</th>
<th>Homozygous OR (95%CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs833052</td>
<td>0.12</td>
<td>1.1 (0.9-1.4)</td>
<td>2.5 (1.1-6.0)</td>
<td>0.04</td>
</tr>
<tr>
<td>rs1109324</td>
<td>0.14</td>
<td>1.1 (0.9-1.4)</td>
<td>2.7 (1.3-6.0)</td>
<td>0.01</td>
</tr>
<tr>
<td>rs1547651</td>
<td>0.14</td>
<td>1.1 (0.9-1.4)</td>
<td>3.0 (1.4-6.6)</td>
<td>0.006</td>
</tr>
<tr>
<td>rs25648</td>
<td>0.14</td>
<td>1.1 (0.9-1.4)</td>
<td>5.1 (2.3-11.2)</td>
<td>0.00005</td>
</tr>
</tbody>
</table>

Garcia-Closas M et al. (Under Review)
20 studies:
8,391 cases
9,109 controls
Concluding Remarks

• Starting to identify associations with genetic variants unlikely to be false positives:
 – Large, good quality individual studies
 – Collaborative efforts through consortia
 – Robust and affordable genotyping technology

• From candidate pathways based on current understanding of etiology to genome-wide scans.
Collaborative Research Program

Breast Cancer Studies
Louise Brinton, HREB, DCEG
Mia Gaudet, HREB, DCEG
Mark Sherman, HREB, DCEG
William Anderson, BB, DCEG
Rose Yang, GEB, DCEG
Jeff Struewing, LPG, CCR
Stephen Hewitt, TRAP, CCR
Jolanta Lissowska, Warsaw Poland
Beata Peplonska, Lodz, Poland
Kathy Egan, Vanderbilt University
Polly Newcomb, Hutchinson
Linda Titus-Ernstoff, Dartmouth

Bladder Cancer Study
Nathaniel Rothman, OEEB, DCEG
Debra Silverman, OEEB, DCEG
Mustafa Dosemeci, OEEB, DCEG
Jonine Figueroa, HREB, DCEG
Manolis Kogevinas, IMIM, Spain
Paco Real, IMIM, Spain
Nuria Malats, IMIM, Spain

Core Genotyping Facility
Stephen Chanock, CGF, DCEG
Meredith Yeager, CGF, DCEG
Robert Welch, CGF, DCEG

Statistics
Nilanjan Chatterjee, BB, DCEG
Jay Lubin, BB, DCEG
Sholom Wacholder, BB, DCEG