Developing tests for Bcr-Abl activity and Gleevec resistance in CML patients

A progress report on IMAT R33 CA103235, "Bcr-Abl kinase assays for STI571 sensitivity or response"

Stephen J. Kron M.D.-Ph.D.
The University of Chicago
1973: A chromosome translocation in CML

Cytogenetic testing for molecular diagnosis, monitoring

Janet Rowley M.D.
U. Chicago
Lasker Award 1998
1982: Ph1 chromosome encodes BCR-ABL

Molecular diagnosis and monitoring via unique transcript
Tyrosine kinase enzyme: Active site = druggable target

Owen Witte M.D.-Ph.D.
UCLA
1997: Bcr-Abl kinase blocker kills CML cells and "cures" chronic phase patients

Imatinib mesylate
Gleevec (Novartis)
$2.2B in 2005

STI571

STI571+Abl
J. Kuriyan

Brian Druker M.D.
Oregon Health Sci.
Nobel Prize 200?
2002: Imatinib resistant kinase mutations

1, F317L; 2, T315I; 3, F359; 4, M244; 5, G250; 6, Q252; 7, Y253; 8, E255; 9, M351; 10, E355; 11, V379; 12, L387; 13, H396

C. Sawyers and others
2006: A proliferation of new drugs, but no assays

Cheaper, generic imatinib

Newly approved & on the way

<table>
<thead>
<tr>
<th>Code</th>
<th>Company</th>
<th>Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMN107</td>
<td>Novartis</td>
<td>Nilotinib</td>
</tr>
<tr>
<td>BMS354825</td>
<td>Bristol-Myers</td>
<td>Dasatinib</td>
</tr>
<tr>
<td>CGP76030</td>
<td>Pfizer</td>
<td></td>
</tr>
<tr>
<td>AP23464</td>
<td>Ariad</td>
<td></td>
</tr>
<tr>
<td>AZD0530</td>
<td>Astra Zeneca</td>
<td>Phase I</td>
</tr>
<tr>
<td>SKI-606</td>
<td>Wyeth-Ayerst</td>
<td></td>
</tr>
<tr>
<td>ON012380</td>
<td>Onconova</td>
<td>Phase I</td>
</tr>
<tr>
<td>VX-680</td>
<td>Merck</td>
<td>Phase I</td>
</tr>
</tbody>
</table>

and many more in development…

New clinical challenges

- Rapid testing for Imatinib resistance
- Selection of second-line therapy
- Identifying effective dosage
- Determining failure of STI therapy
Methylcellulose assay for imatinib sensitivity

Semi-solid matrix, supplemented with growth factors, allows individual progenitors to form discrete colonies.

- Cell suspension in MethoCult
- 5 x 10^4 cells/35 mm dish
- 37°C, 14 to 16 d
- Image colonies

<table>
<thead>
<tr>
<th></th>
<th>0 µM</th>
<th>1 µM</th>
<th>10 µM</th>
<th>100 µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>K562</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaF3/Y253F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaF3/T315I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D. Sher
Technology challenge: Measure Bcr-Abl activity

Criteria for a useful kinase assay
- Detect Bcr-Abl activity in whole cell lysate
- Dynamic range to determine Ki for inhibitors
- Rapid, robust and simple assay, amenable to clinical lab
- Adaptable to high throughput for screening, drug discovery

Abtlide

Abl, BCR-ABL

EIYAAPFAAKKK + ATP \rightarrow EIpYAAPFAAKKK + ADP

Detect:
- ADP
- Phosphotyrosine
- Phosphopeptide

Ignore:
- Cell lysate
- Other kinases
- Phosphatases

Solid-phase assays

Beads versus Chips
Proof-of-principle
Bead-based assay of Bcr-Abl in cell lysates

Glutathione Agarose Bead

GST CrkL domains

ATP
Cell Lysate

Y

+/- Imatinib

Y

Y

P

Glutathione

Anti-phosphotyrosine Western blot
High affinity substrates via Abl binding domain

![Diagram of protein interactions]

<table>
<thead>
<tr>
<th>Protein</th>
<th>GST-Abltide</th>
<th>GST-Abl SH3L-Abltide</th>
<th>GST-Crkl SH3n-Abltide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Reaction on beads with c-Abl

100 µM Imatinib

<table>
<thead>
<tr>
<th>GST-Abltide</th>
<th>GST-Abl SH3L-Abltide</th>
<th>GST-Crkl SH3n-Abltide</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

α-p-Tyr

Memcode

D. Wu et al.
Bcr-Abl inhibition assay in K562 and CML cells

Western blot -- K562 cell steady-state phosphorylation

<table>
<thead>
<tr>
<th>µM IM pretreatment</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>10</th>
<th>10</th>
<th>100</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCrkl (±)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eIF4E (±)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bead assay -- K562 cell Bcr-Abl activity

<table>
<thead>
<tr>
<th>µM IM pretreatment</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>10</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 nM IM added</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-p-Tyr (±)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC (±)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assay of Gleevec resistance in CML patient cells

<table>
<thead>
<tr>
<th>µM Imatinib</th>
<th>0</th>
<th>0.1</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>K562 cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IC50 ~ 10 µM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IC50 >> 50 µM</td>
</tr>
<tr>
<td>Imatinib resistant CML patient peripheral blood ficoll-paque extracted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-P-Tyr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D. Wu, D. Sher
Rapid translation to clinic…
Adapt kinase assay to Luminex technology

1) + cell extract, +ATP, +/- imatinib
2) anti-phosphotyrosine
3) anti-IgG-phycoerythrin

Well C2
Bead A mean fluorescence
Bead B mean fluorescence
Bead C mean fluorescence
Luminex bead assay for imatinib sensitivity

IC$_{50}$ ~ 20 µM

K562 extract

~10 µg lysate/well
~1 h reaction
~1 min to read

~50:1 S/N

S. Petersen
Chip based on ez-rays commercial hydrogel slide

ez-rays slides, multiwell plates (Matrix Technologies)

Activation by TCEP

Bisacrylamide

Cys-Abltide

D. Wu
High throughput Abl/Bcr-Abl activity assay

96 well ez-ray™ plates

K562 cell extract, Abtide
10 µM ATP, 1 h @ 30°C

- peptide - kinase + peptide + kinase

<table>
<thead>
<tr>
<th>µM drug</th>
<th>PD 180970</th>
<th>PD 168326</th>
<th>PD 173955</th>
<th>Imatinib</th>
<th>AG957</th>
<th>Genistein</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10⁻²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IC₅₀ ~ 10 µM

+ 1 µM Imatinib + 200 µM BioMol Kinase Inhibitor set

+ peptide - kinase

B6 Staurosporine G1 Erbstatin analog H2 Triciribine
B7 AG-494 G2 Quercetin dihydrate H3 BML-257
C11 Piceatannol G8 SP 600125 H4 SC-514
C12 PP1 G9 Indirubin H5 BML-259
D9 Ro 21-8220 G10 Indirubin 3' monoxide H6 Apigenin
F1 5-iodotubercidin G12 Kenpaullone H7 Erlotinib analog
F4 PP2 H1 Terreic acid H8 Rapamycin

+ PD180970, µM 10⁻² 10⁻¹ 1 10
+ Imatinib, µM 10⁻² 10⁻¹ 1 10
Acrylic chemistry--Super glue for proteins

Acrylated glass

(3-acryloxypropyl)-trimethoxysilane

Acrylated protein

6-((acrylo)amino) hexanoic acid, succinimidyl ester

GFP, etc.

acrylic-labeled protein

S. Brueggemeier
Copolymerization *in situ* → Acrychip
Quantitative detection of Bcr-Abl inhibition by Imatinib

- ECL Average Gray Value from phosphorylated tyrosine
 - GST-Crkl (both SH3's)
 - GST-Crkl (full length)

IC$_{50}$ ~ 20 µM
Label-free detection of peptide phosphorylation

Matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry

[Diagram showing MALDI TOF process with UV laser, 25 kV, Desorption/Ionization Detector, Time-of-flight tube, and ABI 4700 machine.]

Peptide: 1357
Phosphopeptide: 1437

Intensity: 80 au
Photocleavable peptide array with MALDI read-off

1 µl spot with 10 µM Abltide, c-Abl, 1 h at 30 °C

β-NPA photolinker

Photocleavable peptide arrays

L. Parker et al.
In development: Multiplexed “lawn format” assay

Hydrogel pads in lawn or well geometry

Polyacrylamide copolymer
Abtide EAIYAAPFAKKK-\(\beta\)NPA-Cys-acrylamide
Srtide GEEPLYWSFPAKKK-\(\beta\)NPA-Cys-acrylamide etc..

Immunodetection

no Abtide-Cys + cAbl
100 µM Abtide-Cys + cAbl
500 µM Abtide-Cys + cAbl

~1 cm anti-pTyr "blot"

MALDI detection from copolymerized pad

20 µM Abtide-\(\beta\)NPA-Cys CHCA matrix
Linear positive mode

X. Shi
Toward an integrated assay system: Cotter lab (JHU) mini-MALDI-TOF mass spec

New assays, new geometries, new technologies

- **MethoCult methylcellulose colony forming cell assay**
 - Functional assay of growth inhibition by drugs
 - Slow, low-throughput

- **Glutathione agarose/GST fusion phosphorylation assay**
 - Simple, sensitive, robust (Stratagene SignalScout)
 - Low throughput

- **Luminex glutathione bead/GST fusion phosphorylation assay**
 - Simple, semi-quantitative, high throughput, easy multiplexing
 - Dedicated reader, low sensitivity

- **Acrylamide copolymerization GST fusion phosphorylation assay**
 - Robust, high signal to noise
 - Low sensitivity, difficult multiplexing

- **ez-rays 96 well hydrogel peptide phosphorylation assay**
 - Simple, semi-quantitative, medium throughput
 - Low sensitivity, difficult multiplexing

- **Photocleavable peptide array with MALDI read-off**
 - Robust, semi-quantitative, high throughput, easy multiplexing
 - Dedicated reader, low sensitivity
The Team & Acknowledgements

Assays
Steve Kron
Ding Wu
Xiangfu Shi
David Rhee
Jennifer Campbell
Shariska Petersen

Cells/Patients
Wendy Stock
Dorie Sher
Matthew Myers

Surface chemistry
Sean Palecek
Shawn Brueggemeier

Peptides/MALDI
Steve Kent
Laurie Parker
Vivian Tien

Funding
NIH NCI IMAT R33 CA103235
NIH Roadmap R01 HG3864
NSF Chicago MRSEC

Reagents
A. Imamoto
J. Kuriyan
B. Druker
J. Groffen
C. Sawyers