1

Genomic and Evolutionary Classification of Lung Cancers in Never Smokers from the Sherlock-Lung Study

> MARIA TERESA LANDI, M.D., PH.D. DCEG, NCI, NIH

Lung cancer in never smokers (LCINS): 2

- Accounts for 15-25% of all lung cancer cases worldwide
- ▶ Is the 7th cause of cancer mortality in the US
- > Has predominant adenocarcinoma subtype
- Only a few risk factors are known, accounting for a small proportion of the cases

The Sherlock-Lung study

To use tumor genomic changes as "footprints" to infer etiological processes and evolutionary trajectories of LCINS tumorigenesis

Sherlock-Lung

To mine large electronic health records (EHR) to uncover associations of LCINS with other medical conditions or long-term medication use

Special exposures population (n~300)

Design

General population (n~1700) 4

(n~1700)

2000 tumor samples/ 2000 blood samples

Whole genome sequencing

Mutational Signatures Mutational burden Driver genes Telomere length Neoepitopes Viral remnants Copy numbers Structural variants Germline variants

Aim 1

Characterize the genomic and evolutionary landscape of LCINS

1000 tumor samples/ 1000 normal lung tissues

RNA seq + methylation arrays

Gene expression Inferred mutations Fusions Structural changes Methylation patterns CIMP Methylation signatures Immune cell subtypes 16S RNA – microbiome <u>Aim 2</u>: Develop an integrated molecular, histological and radiological classification of lung cancer in never smokers

5

Molecular landscape

Zhang et al., Nature Genetics 2021 (in press)

Tumor mutational burden across cancer types

Telomere length across cancer types

Landscape of copy number alterations

Genomic features by subtype

Mutational signatures

Signature contribution

Timing tumors' evolutionary history

Timing tumors' evolutionary history

16

Molecular age: median age of the appearance of the most recent common ancestor (MRCA)

Timing tumors' evolutionary history

17

Molecular age: median age of the appearance of the most recent common ancestor (MRCA)

Timing tumors' evolutionary history by subtype

Piano tumor features vs. other subtypes 19

1 KRAS UBA1, RET, NKX2-1, ARID1A only in piano mutually exclusive

Slow growth rate

Stem cells?

Development score: SOX2, SOX9, HMGA2

Sherlock-Lung

TCGA-LUAD

Lineage infidelity: TP63 expression

Sherlock-Lung

Pilot studies to verify cell-oforigin and evolutionary trajectories:

- snRNA-seq
- Single molecule DNA-seq

Piano tumor stem cell-like features

KRAS UBA1, RET, NKX2, ARID1A

Slow growth rate

cells?

22

Stem

Number of cases with T/N WGS, RNA seq and methylation by sex, ethnicity and tobacco smoking ²³

Aim 2: tumor classification

Molecular landscape

CLINICAL IMPLICATIONS

2,430 scanne 875 subj Use of CT-scans or biopsy slides to predict genomic features/TME of the corresponding lesions and provide crucial information for clinical decision-making

ned images nalyzed

24

Analyses by SCNA-subtypes, driver genes, smoking status, ethnicity, sex...

TME by H&E, immunofluorescence, RNA-seq, methylation, deep learning

Collaborators

DCEG major analysts: Tongwu Zhang, Wei Zhao, Phuc Hoang, Jian Sang (ITEB)

DCEG Co-Investigators:

OD: Stephen Chanock, Montse Garcia-Closas, Jonas Almeida. **ITEB**: Mustapha Abubakar, Monica D'Arcy, Mengying Li, Naoise Synnott, John McElderry, Clara Bodelon. **OEEB**: Qing Lan, Nat Rothman, Rena Jones, Neil Caporaso, Debra Silverman. **BB**: Jianxin Shi, Bin Zhu, Ruth Pfeiffer. **LTG**: Jiyeon Choi, Ludmila Prokunina. **CGB**: Jung Kim, Doug Stewart, Shashinaz Gadalla. **REB**: Amy Berrington. **CGR**: Yelena Golubeva, Belynda Hicks, Amy Hutchinson, Scott Lawrence, Petra Lenz

Epidemiological collaborators:

Christine Ambrosone, Roswell Park Cancer Center; Chris Amos, Baylor University; Yohan Bosse', Laval University; Paul Brennan, IARC; David Christiani, Harvard University; Dario Consonni, Angela Pesatori, University of Milan, Italy; Paul Hoffman, University of Nice, France; Chao Agnes Hsiung, National Health Research Institutes, Zhunan, Taiwan; Geoff Liu, University of Toronto, Canada; Tobias Peikert, Mayo Clinic; Bonnie Rothberg, Yale University; Matthew Schabath, Moffitt Cancer Center; Maria Wong, University of Hong Kong

Analytical collaborators:

Ludmil Alexandrov, UCSD; Brian Bartholmai, Mayo Clinic; Peter Campbell, Sanger Institute, UK; Chongyi Chen, CCR, NCI; Hannah Carter, UCSD; Gaddy Getz, Broad Institute; Dmitry Gordenin, NIEHS; Rob Homer, Yale University; Marcin Imielinski, Cornell University; Curtis Harris, CCR, NCI; Carla Kim, Harvard University; Nuria Lopez-Bigas, Inst. Res. Biomedicine, Barcelona, Spain; David Wedge, U. Oxford/Manchester, UK; Lixing Yang, U. Chicago

Advisory Group:

Matthew Meyerson, **Broad Institute** Jon Samet, **Colorado School Public Health** Margaret Spitz, **Baylor University** Ronald Summers, **NIH Clinical Center** Michael Thun, **American Cancer Society** Bill Travis, **Memorial Sloan Kettering CC**