Outline

- Background
 - Attributes require for scalable precision medicine informatics
 - How we got here: Lessons from TCGA
 - Where we are: Role of the NCI Cancer Genomic Data Commons (GDC) & Cloud Pilots
- Where we are going: Information problems we intend to solve with the Precision Medicine Initiative for Oncology
Some Basic Ingredients for Precision Medicine Big Data

- Open Science. Supporting Open Access, Open Data, Open Source, and Data Liquidity for the cancer community

- Standardization through CDEs and Case Report Forms

- Interoperability by exposing existing knowledge through appropriate integration of ontologies, vocabularies and taxonomies

- Sustainable models for informatics infrastructure, services, data, metadata, and curation
The Cancer Genome Atlas

A comprehensive effort to accelerate our understanding of the molecular basis of cancer
TCGA: The Cancer Genome Atlas

- Launched in 2006 by NCI & NHGRI
- Complete characterization of ~35 adult cancers
 - ~20 common cancers at 500 cases each
 - ~15 rare cancers at 50-150 cases each
- Copy Number, Gene Expression, Methylation, DNA Sequencing (WGS/WXS), Clinical data
 - ~11,000 cases
- Project ending in 2016
 - Future projects to use the TCGA infrastructure
 - Exceptional Responders, ALCHEMIST, Clinical Trial Sequencing Program (CTSP), Cancer Driver Discovery Program (CDDP)
Dimensions of TCGA Data

12 Data types: Expression, Methylation, DNAseq, RNAseq ...

27 Technology Platforms (Solid, 454, IlluminaHiSeq, Affymetrix, Agilent ...)

Data levels: Level 1 to level 4 (CEL -> genotypes -> segment mean -> GISTIC)

Data updating: RNAseq V1 to V2
Clinical data follow up
HG18 to HG19 lift over
Archive revisions
Cancer study reveals powerful new system for classifying tumors

One in ten cancers were reclassified in clinically meaningful ways based on molecular subtypes identified by a comprehensive analysis of data from thousands of patients.

August 07, 2014
By Tim Stephens

Cancers are classified primarily on the basis of where in the body the disease originates, as in lung cancer or breast cancer. According to a new study, however, one in ten cancer patients would be classified differently using a new classification system based on molecular subtypes instead of the current tissue-of-origin system. This reclassification could lead to different therapeutic options for those patients, scientists reported in a paper published August 7 in Cell.

“It’s only ten percent that were classified differently, but it matters a lot if you’re one of those patients,”

Example publication from TCGA
The Genomic Data Commons

Facilitating the identification of molecular subtypes of cancer and potential drug targets
NCI Cancer Genomic Data Commons (GDC)

- GDC High Performance Download Client
- GDC Data Center
- GDC Data Portal
- GDC Application Programming Interface (API)
- GDC Organization and Collaborators
- GDC Data Model
- GDC Reports
- GDC Data Submission Tools
- GDC Documentations and Support
- GDC Bioinformatics Pipeline
Genomic Data Commons (GDC) – Rationale

- TCGA and many other NCI funded cancer genomics projects each currently have their own DCC
 - BAM data and results stored in many different repositories; confusing to users, inefficient, barrier to research
- GDC will be a single repository for all NCI cancer genomics data
 - Will include new, upcoming NCI cancer genomics efforts
 - Store all data including BAMs
 - Harmonize the data as appropriate
 - Realignment to newest human genome standard
 - Recall all variants using a standard calling method
 - Will be the authoritative reference data set
Genomic Data Commons (GDC)

- First step towards development of a knowledge system for cancer
- Foundation for a genomic precision medicine platform
- Project initiated Spring of 2014
 - Contract awarded to University of Chicago
 - PI: Dr. Robert Grossman
 - Go live date: Late Spring 2016
 - Not a commercial cloud
- Data will be freely available for download subject to data access requirements
The NCI Cancer Genomics Cloud Pilots

Understanding how to meet the research community’s need to analyze large-scale cancer genomic and clinical data
Amount of genomic data will exceed available resources

Between 2014-2018 production of new NGS data to exceed 2 Exabytes

NGS: Next Generation Sequencing
NGS sequencers include machines from Illumina, Life Technologies, and Pacific Biosciences. Human genome data based on estimates of whole human genomes sequenced

Sources: Financial reports of Illumina, Life Technologies, Pacific Biosciences; revenue guidances; JP Morgan; The Economist; Seven Bridges Analysis.
NCI Cloud Pilots

The Broad
PI: Gad Getz
Institute for Systems Biology
PI: Ilya Shmulevich
Seven Bridges Genomics
PI: Deniz Kural

Period of performance:
NCI GDC and the Cloud Pilots

- Working together to build **common APIs**
- Working with the Global Alliance for Genomics and Health (GA4GH) to **define** the next generation of **secure**, **flexible**, **meaningful**, **interoperable**, **lightweight** interfaces
- Competing on the **implementation**, collaborating on the **interface**
- Aligned with **BD2K** and serving as a part of the **NIH Commons** and working toward shared goals of FAIR (Findable, Accessible, Interoperable, Reusable)
- Exploring and defining **sustainable precision medicine information infrastructure**
Information problem(s) we intend to solve with the Precision Medicine Initiative for Oncology

- **Establish** a sustainable infrastructure for cancer genomic data – through the GDC
- **Provide** a data integration platform to allow multiple data types, multi-scalar data, temporal data from cancer models and patients
 - Under evaluation, but it is likely to include the GDC, TCIA, Cloud Pilots, tools from the ITCR program, and activities underway at the Global Alliance for Genomics and Health
- **Support** precision medicine-focused clinical research
NCI Precision Medicine Informatics Activities

As we receive additional funding for Precision Medicine, we plan to:

- **Expand** the GDC to handle additional data types
- **Include** the learning from the Cloud Pilots into the GDC
- **Scale** the GDC from 10PB to hundreds of petabytes
- Include imaging by interoperating between the GDC and the **Quantitative Imaging Network TCIA** repository
- **Expand** clinical trials tooling from NCI-MATCH to NCI-MATCH Plus
- **Strengthen** the ITCR grant program to explicitly include precision medicine-relevant proposals
Bridging Cancer Research and Cancer Care

- Making clinical research relevant in the clinic
- Supporting the virtuous cycle of clinical research informing care, and back again
- Providing decision support tools for precision medicine

But how?
Precision Medicine informatics community engagement

- **Ongoing**
 - Cancer Informatics for Cancer Centers Clinical Genomics Workshops (Nov ‘13, May ‘14, Nov ‘14, March ‘15) http://ci4cc.org

- **Planned**
 - Convene a community informatics workshop Fall/Winter 2015
Thank you

Warren Kibbe
warren.kibbe@nih.gov

Thanks to content contributors:
Sherri de Coronado, Gilberto Fragoso, Mark Jensen, Warren Kibbe, Juli Klemm, Tony Kerlavage, JC Zenklusen, Elizabeth Gillanders and others.
Cancer Genomics Project Teams

CGC Pilot Team Principal Investigators
- Gad Getz, Ph.D - Broad Institute - http://firecloud.org
- Ilya Shmulevich, Ph.D - ISB - http://cgc.systemsbiology.net/
- Deniz Kural, Ph.D - Seven Bridges – http://www.cancergenomicscloud.org

NCI Project Officer & CORs
- Anthony Kerlavage, Ph.D – Project Officer
- Juli Klemm, Ph.D – COR, Broad Institute
- Tanja Davidsen, Ph.D – COR, Institute for Systems Biology
- Ishwar Chandramouliwaran, MS, MBA – COR, Seven Bridges Genomics

GDC Principal Investigator
- Robert Grossman, Ph.D - University of Chicago

Center for Cancer Genomics Partners
- JC Zenklusen, Ph.D
- Daniela Gerhard, Ph.D
- Zhining Wang, Ph.D
- Liming Yang, Ph.D
- Martin Ferguson, Ph.D

NCI Leadership Team
- Warren Kibbe, Ph.D
- Lou Staudt, M.D.
- Steven Chanock, Ph. D
- George Komatsoulis, Ph.D