Phase III trial of standard adjuvant endocrine therapy +/chemotherapy in patients with 1-3 positive nodes, Hormone Receptor-positive and HER2-negative: SWOG S1007

Kevin Kalinsky, MD, MS
Acting Associate Professor of Medicine
Director, Glenn Family Breast Center
Director, Breast Medical Oncology

Disclosures

Spouse, Stock: Grail, Array BioPharma and Pfizer (Prior Employee)

Advisory/Consulting: Eli-Lilly, Pfizer, Novartis, Eisai, AstraZeneca, Immunomedics, Merck, Seattle Genetics, and Cyclocel

Breast Cancer Steering Committee Strategic Priorities

- Decreasing toxicity/treatment/costs associated with therapy with negligible clinically meaningful benefits
 - TAILORx: HR+/node negative
 - RxPONDER: HR+/node positive
- Understanding biology and translating biology into diagnostic and therapeutic strategies
 - NCTN Late Recurrence Project

Which patients with HR+/HER2- Breast Cancer Benefit from Adjuvant Chemotherapy?

21 Gene Recurrence Score (RS) Assay (HR+/HER2- only)

PROLIFERATION
Ki-67
STK15
Survivin
Cyclin B1
MYBL2

ESTROGEN ER PR Bcl2 SCUBE2

CD68

BAG1

 $RS = +0.47 \times HER2 Group Score$

- 0.34 x ER Group Score

+ 1.04 x Proliferation Group Score

+ 0.10 x Invasion Group Score

+ 0.05 x CD68

- 0.08 x GSTM1

- 0.07 x BAG1

INVASION Stromolysin 3 Cathepsin L2

> HER2 GRB7 HER2

REFERENCE
Beta-actin
GAPDH
RPLPO
GUS

TFRC

GSTM1

CategoryRS (0 - 100)Low riskRS < 18</td>Int riskRS \geq 18 and < 31</td>High riskRS \geq 31

TAILORx Methods: Treatment Assignment & Randomization

Accrued between April 2006 - October 2010

Preregister - Oncotype DX RS (N=11,232) Register (N=10,273)

ARM A: Low RS 0-10 (N=1629 evaluable) **ASSIGN** Endocrine Therapy (ET) Mid-Range RS 11-25

(N=6711 evaluable)

RANDOMIZE

Stratification Factors: Menopausal Status, Planned Chemotherapy, Planned Radiation, and RS 11-15, 16-20, 21-25

ARM D: High RS 26-100

(N=1389 evaluable)

ASSIGN

ET + Chemo

ARM B: Experimental Arm

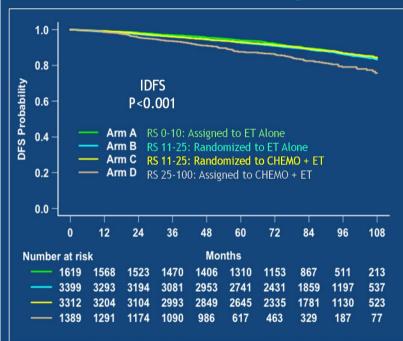
(N=3399)

ET Alone

ARM C: Standard Arm

(N=3312)

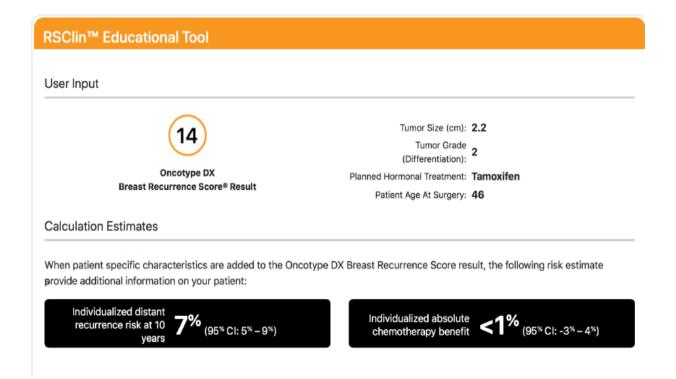
ET + Chemo



TAILORx Results - ITT Population: All Arms (A,B,C & D)

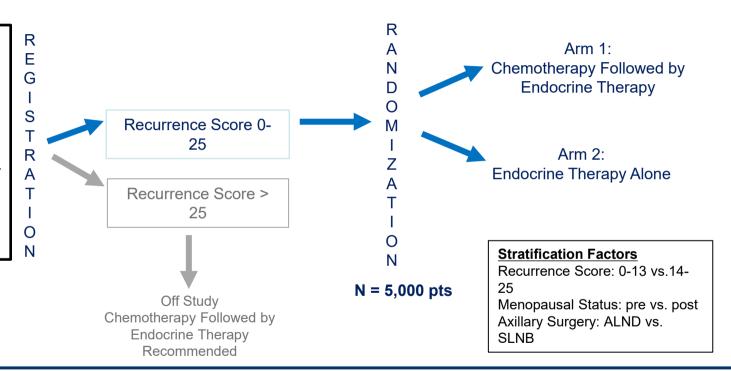
9-Year Event Rates

- RS 0-10 (Arm A)
 - 3% distant recurrence with ET alone
- RS 11-25 (Arms B & C)
 - 5% distant recurrence rate overall
 - ≤ 1% difference for all endpoints
 - IDFS (83.3 vs. 84.3%)
 - DRFI (94.5 vs. 95.0%)
 - RFI (92.2 vs. 92.9%)
 - OS (93.9 vs. 93.8%)
- RS 26-100 (Arm D)
 - 13% distant recurrence despite chemo + ET


TAILORx Results - ITT Population: Potential Chemotherapy Benefit in Women < 50 Years (N=2216) in RS 11-25 Arms

- RS 16-25 some chemo benefit
 - RS 16-20: 9% fewer IDFS events, including 2% fewer distant recurrences
 - RS 21-25: 6% fewer IDFS events, mainly consisting of fewer distant recurrences
- RS 0-15 good prognosis with endocrine therapy
 - 3% distant recurrence with ET alone
 - no evidence for chemo benefit in RS 11-15

RSClin: Tool Available for patients with HR+/HER2-, LN- Breast Cancer


 What about the role of genomic assays for determination of risk and chemotherapy benefit in patients with HR+/HER2- and

lymph node + breast cancer?

RxPONDER Schema

Key Entry Criteria

- Women age <u>></u> 18 yrs
- ER and/or PR > 1%, HER2- breast cancer with 1*-3 LN+ without distant metastasis
- Able to receive adjuvant taxane and/or anthracycline-based chemotherapy**
- Axillary staging by SLNB or ALND

Statistical Analysis Plan

Primary Objective

■ Determine the effect of chemotherapy on invasive disease-free survival (IDFS) in pts with 1-3 LN+ breast cancer and a RS < 25 and assess whether the effect depends on the RS</p>

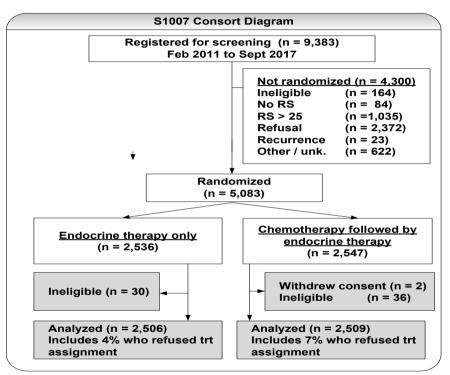
Primary Hypothesis

Chemotherapy benefit will increase as the RS increases from 0 to 25 in an
 Intent-to-Treat (ITT) analysis

Hudis et al, JCO 2007

Statistical Analysis Plan

Pre-Specified Interim Analysis for IDFS


- Sept 2020: Third analysis at 410 events (49% of expected 832 events)
- Nov 2, 2020: Decision made by independent DSMC and NCI to report data

Secondary Endpoints

- Overall survival
- Distant DFS and local disease-free interval
- Toxicity
- Patient-reported quality of life outcomes

RxPONDER Results: Accrual and ITT population

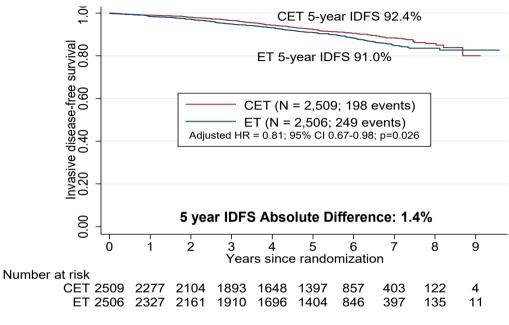
- √ 50% randomized to chemotherapy received TC (4 or 6 cycles)
- ✓ Ovarian function suppression use in premenopausal pts (6-month post randomization data)
 - 16% in the ET arm and 3% in Chemotherapy + ET arm
- ✓ 2 treatment-related deaths in ET arm (stroke) and 3 in chemotherapy + ET arm (sepsis, typhlitis, and liver necrosis)

ET = Endocrine Therapy

Pre-specified Analysis by Menopausal Status

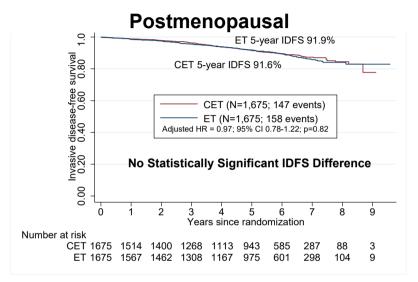
Chemotherapy benefit for IDFS is different depending on menopausal status

Term	Hazard ratio	2-sided p-value	95% CI
Chemotherapy	0.53	<0.001	0.37 – 0.76
RS (per unit change)	1.06	<0.001	1.04 – 1.08
Menopausal status	0.79	0.08	0.60-1.03
Chemo x Menopause Interaction	1.79	0.008	1.17-2.74


Baseline Characteristics by Treatment Arm

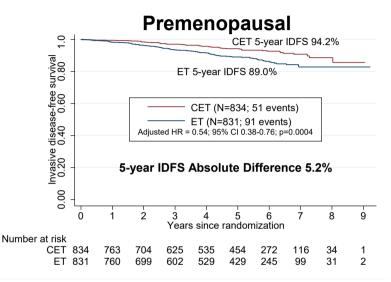
Baseline variable	Endocrine Therapy (n=2,506)	Chemotherapy (n=2,509)	Overall (n=5,015)	
Race				
White	64.9%	66.4%	65.7%	
Black	4.8%	5.1%	5.0%	
Asian	6.8%	6.1%	6.5%	
Other/Unknown	23.5%	22.3%	22.9%	
Hispanic				
Yes	13.0%	11.9%	12.4%	
No	67.6%	68.9%	68.3%	
Unknown	19.4%	19.3%	19.3%	
Menopausal status				
Premenopausal	33.2%	33.2%	33.2%	
Postmenopausal	66.8%	66.8%	66.8%	
Recurrence Score				
RS 0-13	42.7%	42.9%	42.8%	
RS 14-25	57.3%	57.1%	57.2%	
Nodal Dissection				
Full ALND	62.7%	62.5%	62.6%	
Sentinel nodes only	37.4%	37.5%	37.4%	
Positive Nodes				
1 node	65.9%	65.0%	65.5%	
2 nodes	24.9%	25.7%	25.3%	
3 nodes	9.2%	9.2%	9.2%	
Grade				
Low	24.6%	24.7%	24.7%	
Intermediate	64.1%	66.1%	65.1%	
High	11.3%	9.2%	10.3%	
Tumor size				
T1	58.5%	57.7%	58.1%	
T2/T3	41.5%	42.3%	41.9%	

IDFS in Overall Population by Treatment Arm



CET = Chemotherapy + Endocrine Therapy; ET = Endocrine Therapy Alone

447 observed IDFS events (54% of expected at final analysis) at a median follow-up of 5.1 years

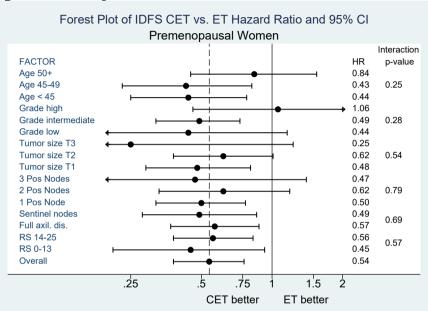


IDFS Stratified by Menopausal Status

IDFS Event	CET	ET	Total (%)
Distant	39	44	83 (27%)
Local-Regional	10	14	24 (8%)
Contralateral	10	9	19 (6%)
Non-Breast Primary	44	47	91 (30%)
Recurrence Not Classified	9	7	16 (5%)
Death not due to Recurrence or Second Primary	35	37	72 (24%)

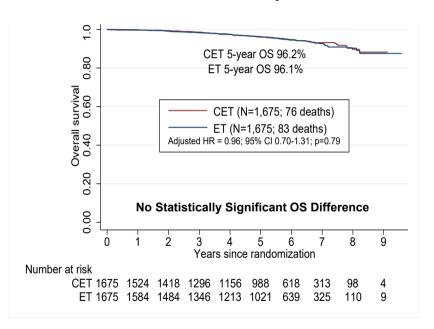
Absolute Difference in Distant Recurrene as 1st site: 0.3% (2.3% CET vs. 2.6% ET)

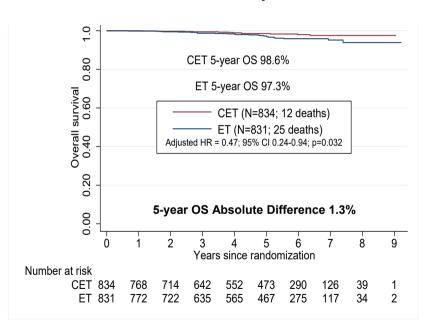
IDFS Event	CET	ET	Total (%)
Distant	26	50	76 (54%)
Local-Regional	8	17	25 (18%)
Contralateral	4	8	12 (8%)
Non-Breast Primary	10	10	20 (14%)
Recurrence Not Classified	1	1	2 (1%)
Death not due to Recurrence or Second Primary	2	5	7 (5%)


Absolute Difference in Distant Recurrence as 1st site: 2.9% (3.1% CET vs. 6.0% ET)

Forest Plots of IDFS by Menopausal Status

Landmarked Exploratory Analysis for IDFS in Premenopausal Women on Endocrine Therapy arm:


Ovarian Function Suppression (n=126) vs. no Ovarian Function Suppression (n=647) at 6 months: HR 0.73 (95% CI: 0.39-1.37), p=0.33


National Cancer Institute-Designate

Overall Survival by Menopausal Status

Postmenopausal

Premenopausal

RxPONDER Conclusions

- ✓ Postmenopausal women with 1-3 positive nodes and RS 0-25 can likely safely forego adjuvant chemotherapy without compromising IDFS
 - ✓ This will save tens of thousands of women the time, expense, and potentially harmful side effects that can be associated with chemotherapy infusions
- ✓ Premenopausal women with positive nodes and RS 0-25 likely benefit significantly from chemotherapy

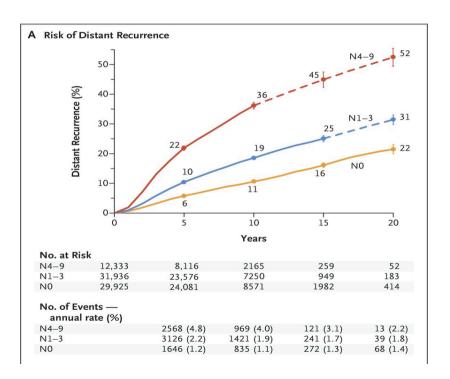
Limitations

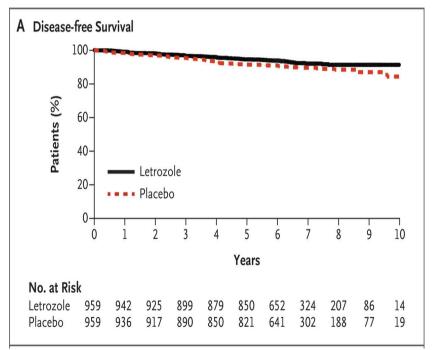
- ✓ Still awaiting ~ 50% of the population to experience events
 - ✓ Unclear whether subgroup data will change with mature data?
- ✓ <u>Is chemotherapy benefit in premenopausal women exclusively due to amenorrhea?</u>
- ✓ Minority of patients underwent ovarian function suppression at 6 months
- ✓ Did not capture rate of pathologically or clinically node + breast cancer prior to surgery
- ✓ Generalizability
 - ✓ Only 9.2% of patients had 3 LN+. 5.8% had T3 tumors

TransATAC: Not All Genomic Assay are the Same!

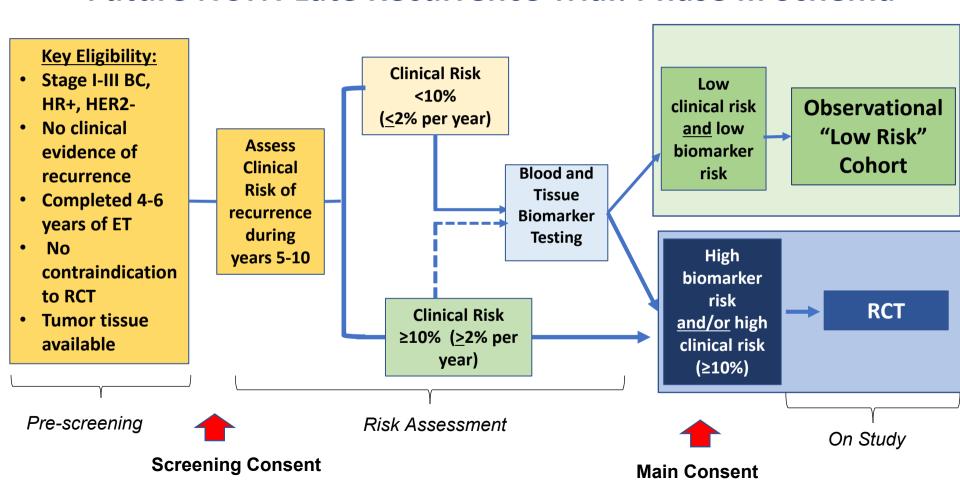
Table 3. Univariate HRs and C Indexes for All Prognostic Signatures According to Nodal Status During Years 5 to 10

	Patient Group				
Gene	Node-Negative Disease (n = 535)		Node-Positive Disease (n = 154)		
Signature	HR (95% CI) ^a	C Index (95% CI)	HR (95% CI) ^a	C Index (95% CI)	
CTS	1.95 (1.43-2.65)	0.721 (0.654-0.788)	1.61 (1.05-2.47)	0.644 (0.534-0.753)	
IHC4	1.59 (1.16-2.16)	0.660 (0.576-0.745)	1.20 (0.79-1.81)	0.579 (0.460-0.697)	
RS	1.46 (1.09-1.96)	0.585 (0.467-0.702)	1.24 (0.81-1.90)	0.555 (0.418-0.693)	
BCI	2.30 (1.61-3.30)	0.749 (0.668-0.830)	1.60 (1.04-2.47)	0.633 (0.514-0.751)	
ROR	2.77 (1.93-3.96)	0.789 (0.724-0.854)	1.65 (1.08-2.51)	0.643 (0.528-0.758)	
EPclin	2.19 (1.62-2.97)	0.768 (0.701-0.835)	1.87 (1.27-2.76)	0.697 (0.594-0.799)	

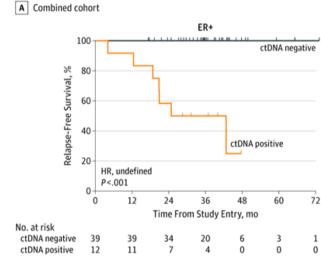

Future Directions in HR+ Breast Cancer


Is benefit of chemotherapy seen in TailoRx and RxPonder in premenopausal patients due to chemotherapy effect or ovarian suppression?

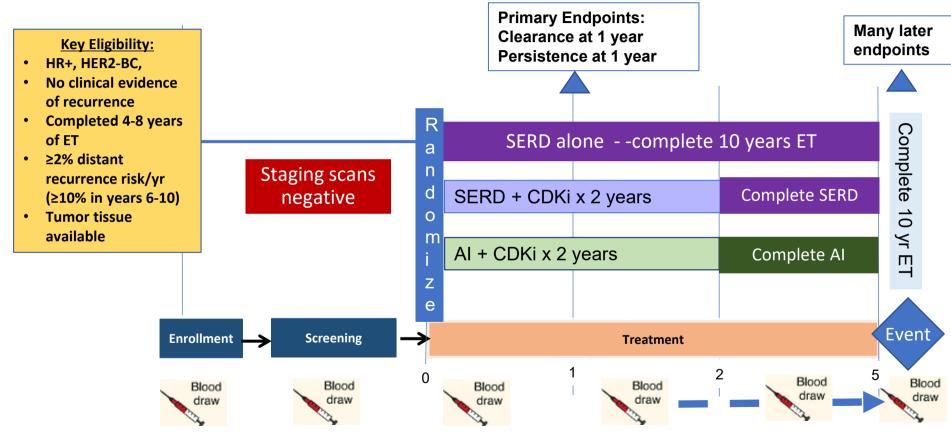
- Breast International Group (BIG)/NCTN collaboration: yearly scientific meetings and multiple collaborative efforts
 - Male Breast Cancer International Trial (NCT01101425): >1800 patients enrolled
 - POSITIVE study of endocrine therapy interruption for pregnancy (NCT02308085):
 518 patients enrolled


Is there an additional opportunity to intervene in high-risk patients to prevent LATE recurrence of HR+ breast cancer?

Future Direction: Late Recurrence Remains a Significant Issue in ER+/HER2- Breast Cancer



Future NCTN Late Recurrence Trial: Phase III Schema


Why We are Not Ready for Phase III Trials

- Role of blood-based marker detection in early-stage BC, such as ctDNA and CTCs
 - Still in clinical validity phase
 - Differences in pre-analytic and analytic considerations
 - CTCs require real-time assessment
 - ctDNA platforms may require baseline tumor tissue
 - Bespoke vs. agnostic
 - Limited cross-platform analyses
 - Assays can vary in terms of sensitivity and detection
- Best therapeutic intervention
 - Oral SERDs early in development
 - CDK4/6 inhibitors effective in metastatic disease but conflicting data in adjuvant setting

Median lead time 10.7 months from ctDNA detection to clinical relapse

Late Recurrence Phase 2 Trial Schema: Treatment Phase

- Blood collection: Biomarker assays are batched; patients are not informed of results
- Timepoints: 1, 2, 3, 6, 9, 12, 18, 24, 36, 48, 60 months after enrollment. Anticipate two 10 mL tubes per blood-based assay

Conclusion

- Significant Progress in Chemotherapy De-Escalation with TailorX and RxPONDER
- Premenopausal Patients: Identify De-escalation Strategies to Prevent Recurrence
- Late Recurrence: Assessing predictors and potential interventions remains critical

