

NCI IRP Neurofibromatosis Type 1 (NF1) Program

Brigitte Widemann, M.D.

Neurofibromatosis Type 1 (NF 1)

- Common single gene disorder (1:3500), prototype RASopathy
 - Neurofibromin, 17q11.2, RAS pathway activation
- Cutaneous stigmata:
 - Café au lait macules, cutaneous neurofibromas, skin freckling
- Tumor development:
 - Plexiform neurofibromas (PN)
 - Atypical neurofibroma (AN)
 - Malignant peripheral nerve sheath tumors (MPNST)
 - Optic pathway and low-grade gliomas
 - Leukemias (JMML)
- Organ manifestations:
 - Skin, CNS, peripheral nerves, cardiovascular, gastrointestinal, endocrine, skeletal, growth, hematological

Appearance, pruritus Biallelic loss of *NF1* Appearance, pain, function loss → Malignant transformation Biallelic loss of *NF1* + loss of *CDKN2A/B* + loss of PRC2, p53, (and others)

Plexiform Neurofibromas (PN)

- Histologically benign, biallelic loss of NF1
 - Schwann cells, fibroblasts, mast cells, perineurial cells, highly vascular
 - Involve multiple nerve fascicles/branches
- Congenital, slow growth, large size, complex shape
- Disfigurement, pain, functional impairment, life-threatening
- Transformation to malignant peripheral nerve sheath tumor (MPNST) (10-15%)
- Surgical resection only potentially curative treatment

3 years

5 years

3 years

5 years

MRI Volume Measurement of Plexiform Neurofibromas

STIR Sequence

Histogram Analysis

Signal Intensity

Tumor Border

Tumor Border Identified

Solomon, J. et al., Comp. Med. Imaging and Graphics, 2004

Volumetric MRI Analysis to Measure PN

- More sensitive and reproducible than standard solid tumor response criteria
- Progression:
 - ≥ 20% increase in PN volume
- Response:
 - ≥ 20% decrease in PN volume
- Central response evaluation on national multi-site trials

Solomon J ... Widemann B: Comp. Med. Imaging and Graphics, 2004 Dombi E ... Widemann B: Neurology 2013

Characterization of Plexiform and Atypical Neurofibromas

- Identification of Distinct Nodular Lesions
- PN grow most rapidly in young children
- DNL grow independently of age
- Many DNL are atypical neurofibromas

Akshintala S…Dombi E*, Widemann B*, submitted

Phase II Trial of Tipifarnib for Children with PN

Widemann B. et al.: J Clin Oncol 2006; Neuro Oncology 2014

No PN volume decrease ≥20% on placebo or tipifarnib arms

Widemann B. et al.: J Clin Oncol 2006; Neuro Oncology 2014

hase I Trial: MEK Inhibitor Selumetinib in Children with NF1 PN

- NCI CTEP sponsored, POB coordinated, multi-site
- Primary objective: Maximum tolerated dose
- Results:
 - MTD 25 mg/m² PO BID continuous dosing
 - (60% adult recommended dose)
 - Partial response 17/24 (71%) patients
 - Anecdotal clinical benefit

Activity of Selumetinib in Neurofibromatosis Type 1–Related Plexiform Neurofibromas

Baseline Cycle 5 Cycle 10

Study	Stratum I (≥ 1 PN morbidity)	
Eligible Ages (years)	2-18	
Primary objective	Confirmed response rate 3D MRI	
Target response rate	36%, 50 patients	
Secondary objectives		
PRO/ObsRO	Pain, QOL (≥ 8 years old), Function	
Disfigurement	Patients with visible PN:	
	Photography / video	
Function	Based on PN location:	
	Orbit, airway, motor, bowel, bladder, other	
PK, Cytokine, PBMC	Baseline and on treatment	
Long term safety	5-7 years	

Example: Complexity of Functional Evaluations

MRI, PRO, functional evaluation, photography every 4 cycles during first year

SPRINT Phase II: Best Response through June 29, 2018

- Enrollment stratum 1: 50 patients 8/2015-8/2016
- Median age: 10.3 years (3.5-17.4)
- Median target PN volume: 487.5 mL (5.6-3820)
 - 21 progressive, 15 non-progressive PN
- Median number of PN morbidities:

10%

Gross A...Widemann B: NEJM prov. accepted

SPRINT: Improvement in PN Pain and PRO

A CO

Pamela Wolters

Gross A...Widemann B: NEJM prov. accepted

SPRINT: Improvement in Functional Morbidities

Example: Improvement in Airway Function

Example: Improvement in Appearance

Prevention of morbidity: Airway compromise

SPRINT External Control NF1 Natural History Study

SPRINT versus Prior Phase II Trials for Progressive PN

Genetically Engineered Mouse Models of NF1 Neurofibroma Predict for Activity

Ratner Lab

Mouse Neurofibroma DhhCre;Nf1fl/fl

Wu...Ratner. Cancer Cell, 2008. Jessen ...Ratner. JCI, 2012

Clapp Lab: Hyperactive RAS SPORE

Use of preclinical trials to evaluate:

- Optimal dose
- Schedule
- Pharmacodynamic effect (pERK)

Clapp lab, unpublished confidential data

Phase II Selumetinib: Adults with Growing or Symptomatic PN

- Treatment: Selumetinib 50 mg PO BID continuous dosing
- Evaluations: Paired tumor biopsies (baseline and pre cycle 2 or 3)
- Simon 2-stage design: Target response rate 45%

Patients	(N=21)
Age in yrs., median (range)	33 (18-60)
Sex: F/M	6 / 15
Target PN	
Typical	17
Solitary Nodular	4

Baseline PN Morbidities

Selumetinib Adult PN: Activity through October, 2019

Patient-reported target tumor pain intensity and pain interference scores significantly improved (p<0.002)

Atypical Neurofibromas Are MPNST Precursors

Atypical neurofibroma (AN) characterization:

- 63 patients (32 male, 31 female) with 76 AN
- Median age at diagnosis: 27.7 years (7.6-60)
- Most were FDG avid on FDG-PET (56/57)
- 21/63 (33%) of patients with AN had history of MPNST

Hypothesis: Most MPNST arise from preexisting AN and not directly from PN

Clinical challenge: It is unknown if all and when AN transform to MPNST

Higham C,...Legius E*, Widemann B*, Ferner R*: Neuro-Oncology 2018

Strategies to Prevent MPNST

1) MPNST State of the Science Conference:

- Pathology consensus: Atypical Neurofibromatous
 Neoplasm of Uncertain Biologic Potential (ANNUBP)
- Recommendation for surgical resection of AN
 - Marginal resection of AN: Safe and feasible
 - Low recurrence risk

2) Biomarkers for malignant transformation: Key collaborator Dr. Jack Shern

- Serial blood samples for detection of cell-free DNA
- Genomic dissection of tumor evolution, single cell sequencing

3) Phase I/II trial of CDK4/6 inhibitor abemaciclib:

Children and adults with unresectable pathology confirmed AN

Reilly K...Widemann B, Stewart D: JNCI, 2017 Miettinen M...Widemann B, Perry A: Humpath, 2017

Nelson C...Widemann B, Chittiboina P., J Neurosurg, 2019

NCI IRP NF1 Program Future Considerations

Can MEK inhibitors prevent the development of PN related morbidities?

Develop trial to assess the effect of selumetinib on asymptomatic but growing PN

Trials for other NF1 manifestations?

- NF1 cutaneous neurofibromas (UAB, NCI)
- Low grade
 Effect of se
 Atypical neu
 Combination

 Develop tools fo

 Medication ad 11 mo. 17 mo. 25 mo. 36 mo.
 Patient reported outcomes and patient engagement
- Evaluation of MEK inhibitors and other RAS targeted agents in other conditions
- Advancing RAS/RASopathy Therapies (ART)
- Rare pediatric solid tumors

Acknowledgements

Patients and families NCI, CCR, POB

- Imaging: Eva Dombi
- Lead Al: Andrea Gross
- PRO: Pam Wolters, Staci Martin
- Research and clinical staff:
 - Research nurses, nurse practitioners,
 - Data manager,
 - patient care coordinator support
- Participating sites/collaborators
 - Brian Weiss (Cincinnati Children's)
 - Michael Fisher (CHOP)
 - AeRang Kim (Children's National)
 - Alice Chen, NCI DTC
 - James Doroshow, NCT DTC
 - Geraldine O'Sullivan Coyne, NCI DTC

- Clinical collaborators:
 - Jaishri Blakeley
 - Prashant Chittiboina
 - Srivastava Apurva
- Statistical support: Seth Steinberg
- CTEP: Austin Doyle, Malcolm Smith
- FDA
- AstraZeneca
- Preclinical collaborators:
 - Jack Shern, NCI POB
 - Nancy Ratner, Wade Clapp, Karen Cichoeski
 - Hyperactive RAS SPORE
- Funding: NCI IRP, CTF, NTAP, AZ
- Advancing RAS/RASopathy Therapies:
 - Marielle Yohe, Andrea Gross
 - Douglas Stewart, Sharon Savage, NCI DCEG

Selumetinib Reduces Spinal Neurofibroma Burden in NF1

- Spinal neurofibromas (SNF) in NF1:
 - Progressive neurologic deficits and require repeat surgeries
- SNF in children and adults on selumetinib trials:
 - 23 of 56 patients enrolled had SNF extending into the central canal
- On selumetinib improvement in canal distortion, CSF distribution and spinal cord deformity in majority of patients

