Accelerating cancer prevention

We already know how to prevent most cancer.

Joint BSA&NCAB meeting Dec 4 2014 National Cancer Institute

Graham A. Colditz, MD DrPH, FAFPHM

Goals of talk

Review potential for prevention

Challenge us to address and define – distinctive roles for NCI in cancer prevention research

Issues:

- Improving cancer prevention,
- Implementing what we know,
- Identifying what needs to be done to achieve desired effects, and
- NCI's role/priorities and collaborations with other agencies.

Shared understanding of what implementation science is

Clarity on boundaries between components of HHS

Medical interventions proven to

prevent cancer (Sci Trans Med 2012)

Intervention	Target	Magnitude of reduction	Time (yrs)
Aspirin	Colon mortality	40%	20+
SERMs	Breast incidence	40-50%	5+
Salpingo oophorectomy	Familial breast ca	50%	3+
Screening for colorectal ca	Colon ca mortality	30-40%	10
Vaccination	Cervical ca incidence	50-100%	20+
	Liver ca incidence	70-100%	20+
Mammography	Breast ca mortality	30%	10-20
Serial CT lung	Lung ca mortality	20%	6+

Washington University in St.Louis • School of Medicine

Population approach versus high risk strategy

Washington University in St.Louis • School of Medicine

Behavioral, Social and Policy interventions that impact Cancer Prevention

Intervention	Target	Type of Ix	
Reduce tobacco use	Chidlren and Adolescents Smokers to quit	Combined Pharmaco/behavioral ixs Smoke-free policies Tobacco taxes	SG
Increase physical activity	Individuals and community norms	Urban design Stairs and workplace	SG
Reduce Obesity	Population	Messages School & work environ Physical activity Food & beverage	IOM report
Limit alcohol	Population	Taxes	WHO

surgery ciences

When we implement what we know, we prevent cancer

Tobacco –

lung cancer mortality decreased by one third

• Adolescent smoking decrease 35% (1999) to 18% (2011)

Colorectal cancer screening –

steady increase in use and reduction in CRC mortality over time

Adult smoking prevalence US & Massachusetts, 1990-2005

Massachusetts Dept of Public Health, 2007

Washington University in St.Louis • School of Medicine

Trends in smoking and lung cancer, USA

Lifestyle: high income countries

Cause	% cancer caused	Magnitude possible reduction	Time (yrs)	
Smoking	33			
Overweight/o besity	20			
Diet	5			
Lack of exercise	5			•
Occupation	5			
Viruses	5-7			
Family history	5			
Alcohol	3			
UV/ionizing radiation	2	Colditz et al	. Sci Transl Med 2012: Mai	rch 28
Reproductive	3			of Surger
¹¹ Pollution	2			th Science

📰 Was

Lifestyle: high income countries

Cause	% cancer caused	Magnitude possible reduction	Time (yrs)
Smoking	33	75%	
Overweight/o besity	20	50%	
Diet	5	50%	
Lack of exercise	5	85%	
Occupation	5	50%	
Viruses	5-7	100%	
Family history	5	50%	
Alcohol	3	50%	
UV/ionizing radiation	2	50%	
Reproductive	3	0	
Pollution	2	0	

I Wasl

Surgery

Sciences

Burden Cigarette Smoking, USA

Washington University in St. Louis • School of Medicine

Lifestyle: high income countries

Caus	e	% cancer caused	Magnitude possible reduction	Time (yrs)	
Smok	ing	33	75%	10-20	
Overv besity	veight/o /	20	50%	2-20	
Diet		5	50%	5-20	
Lack of exerc	of ise	5	85%	5-20	
Occup	pation	5	50%	20-40	
Viruse	es	5-7	100%	20-40	
Famil	y history	5	50%	2-10	
Alcoh	ol	3	50%	5-20	
UV/io radiat	nizing ion	2	50%	2-10	
Repro	oductive	3	0	N/A	of Sur
ⁱⁱ Pollut	ion	2	0	N/A	th Scier

I Wasl

Time course: lung & total mortality

Sources: Kenfield et al, 2008; Aberle et al, 2011

Washington University in St.Louis • School of Medicine

Infections

- Helicobacter pylori
- HPV
- Hepatitis B
- Hepatitis C
- Epstein-Barr virus
- HTLV
- Human herpes virus 8
- Schistosoma haematobium
- Opisthorchis viverrini

- High income countries 7.4%
- Low and middle income countries 23% of cancer
- 2 million cases/yr (16%)
- Note: IARC excludes HIV as only a co-factor for other infectious causes through immunosuppression

de Martel et al, Lancet Oncology, 2012

Hepatitis B (HepB3) immunization coverage among 1-year-olds (%)

Washington University in St.Louis • School of Medicine

Trends in U.S. Vaccination Rates: Ages 13-17 Yrs

Abbreviations: Tdap = tetanus, diphtheria, acellular pertussis vaccine; MenACWY = meningococcal conjugate vaccine; HPV-1 = human papillomavirus vaccine, \geq 1 dose; HPV-3 = human papillomavirus, \geq 3 doses.

* Tdap and MenACWY vaccination recommendations were published in March and October 2006, respectively.

+ HPV vaccination recommendations were published in March 2007.

Washington University in St.Louis • School of Medicine

Gaps -> Research opportunities Target vaccine: whole population

- Convenient dosing current vaccines
- Next generation vaccine / broader protection, easier storage, etc, fewer doses
- Oropharyngeal HPV infections and cancer
- More effective ways to communicate about HPVassociated disease and HPV vaccines
- Determine how best to integrate HPV vaccination and cervical cancer screening

President's Cancer Panel Annual Report 2012-13

Gaps → Research opportunities Target: high risks women – SERMs to prevent breast cancer

Stratify risk (epidemiology/genomics/imaging)

Identify "high risk" women

Communicate risks and benefits

Clinical implementation of tools and strategies

Uptake and sustained use by women

Department of Surgery Division of Public Health Sciences

Identify

Deliver

Reduce

incidence

Washington University in St.Louis • School of Medicine

Moving from Discovery to Delivery

Translation scientific evidence base to population health

- Implementation of what works
- Evidence → guidelines (USPSFT or CDC community guide)
- Benefit estimates → time frame for risk reduction
- Disparities → Worsened, improved, or unchanged?

Adapted from: Warnecke, OhyiGehlert et al. HAJPH, 2008

The Critical Intersection of Basic and Population Science

What are the biological mechanisms that translate disadvantaged social and economic circumstances into poorer health???

Washington University in St.Louis • School of Medicine

University of Chicago's Center for Interdisciplinary Health Disparities Research

- Does the social-psychological environment that inner city black women live in increased their chances of dying from breast cancer??
 - Socially isolated mice:
 - Experience stress as a result of isolation
 - Developed spontaneous mammary gland cancers faster than control-group rats that were not kept in isolation.
 - Studied 230 newly diagnosed black breast cancer patients living on Chicago's South Side.
 - Endocrine burn-out?

🗱 W&Anington University in St. Louis • School of Medicine

Why are we not preventing more cancer now?

Multiple barriers:

- 1. Skepticism that cancer can be prevented
- 2. Short term focus of cancer research
- 3. Interventions deployed too late in life
- 4. Research focused on treatment not prevention
- 5. Debates among scientists
- 6. Societal factors ignored
- 7. Lack of transdisciplinary training
- 8. Complexity of implementation

Colditz et al Sci Transl Med 2012: March 28

Barrier 2: <u>Short-term</u> focus

Time required for cancer prevention does not match funding periods

Long-term benefits, e.g., smoking cessation takes decades to show at population level

Funded studies focus too late in disease development process

In contrast, the natural history or time-course of cancer shows development over decades

Colditz et al. Sci Transl Med 2012: March 28

What Potentially Influences Cancer?

Washington University in St.Louis • School of Medicine

Definition – implementation science

Scientific study of how to move evidencebased interventions into practice and policy

Includes study of how to sustain changes to improve population health

**PAR13-055

Washington University in St.Louis • School of Medicine

Cancer Prevention Gaps to Fill

- How do we identify gaps in discovery?
- Where do we strengthen science?
- How do we sharpen focus: on individual/community/broader public health programs High risk vs. population-wide programs
- Increase translation and delivery to all members of society
- How much should NCI be doing and where do responsibilities of funding partners (NIH, CDC, AHRQ,) tie in?
- Even when program implemented, research gaps remain to achieve full population coverage and health benefits

Graham Colditz, MD, DrPH Niess-Gain Professor of Surgery Chief, Division of Public Health Sciences, Dept. of Surgery Campus Box 8100 660 South Euclid St. Louis, MO 63110 (314) 454-7939

colditzg@wustl.edu

 $\bigcirc 2014$

Washington University in St.Louis • School of Medicine