

Vanquishing Cancer Through Genomics

...and by genomics I mean any systematic (genome-wide) approach to define the molecular basis of malignancy and identify curative strategies **Structural Genomics**

Metaphors of Cancer Cancer is a genetic disease Pathways Cancer is a cell biological disease **Cellular interactions** Cancer is an organismal disease **Environmental interactions** Cancer is a societal disease

NCI Center for Cancer Genomics: Current Initiatives

NCI Center for Cancer Genomics: Genomic pipeline

Structural Genomics of Cancer: Two Game Changers

NCI Center for Cancer Genomics: Future Initiatives

- Define the molecular basis for clinical phenotypes
 - Analyze completed clinical trials of NCI cooperative groups
 - Colorectal cancer
 - Lung adenocarcinoma
 - RFP to be announced to NCTN for genomic analysis of trial samples
 - Alchemist trial in lung adenocarcinoma
 - Exceptional responders initiatives
- Define the "full" set of genetic drivers in cancer
 - Pilot projects in colorectal, lung adeno, and ovarian cancer
- Next generation cancer models for functional genomics
- Develop NCI Genomics Data Commons (GDC)

Case Accrual and Analysis Status

TCGA Tumor Project Progress as of November 2014

TCGA Gastric Cancer Project – The Power of Integrative Analysis

244 Tumors

TCGA Gastric Cancer Project – The Power of Integrative Analysis

Histopathology of Gliomas

Low grade gliomas Astrocytoma

Oligodendroglioma

Glioblastoma Multiforme

Survival With Glioblastoma Multiforme vs. Low Grade Glioma

Common Genetic Profiles in Glioblastoma and a Subset of Low Grade Gliomas

Daniela Gerhard, Ph.D. Director Office of Cancer Genomics National Cancer Institute

The Ph-like subtype of B cell Acute Lymphoblastic Leukemia

Yeoh et al. Cancer Cell 1:133 (2002)

Kinase Fusions Discovered in Ph-like ALL

Kinase Gene	Tyrosine Kinase Inhibitor	Fusion Partners	Patients
		number	
ABL1	Dasatinib	6	14
ABL2	Dasatinib	3	7
CSF1R	Dasatinib	1	4
PDGFRB	Dasatinib	4	11
CRLF2	JAK2 inhibitor	2	30
JAK2	JAK2 inhibitor	10	19
EPOR	JAK2 inhibitor	2	9
DGKH	Unknown	1	1
IL2RB	JAK1 inhibitor, JAK3 inhibitor, or both	1	1
NTRK3	Crizotinib	1	1
РТК2В	FAK inhibitor	2	1
TSLP	JAK2 inhibitor	1	1
ΤΥΚ2	TYK2 inhibitor	1	1

Roberts et al. *Cancer Cell* 2012;22:153 Roberts et al. N Engl J Med 2014;371:1005-1015

Response of Pediatric B-ALL With a EBF1-PDGFRB Translocation to Imatinib

- 10 year old male with refractory B-ALL 70% blasts at day 29
- Cytogenetics: 5q alteration
 => interstitial deletion by array CGH disrupting EBF1 and PDGFRB genes
- EBF1-PDGFRB fusion translocation detected by RT-PCR
- Commenced imatinib
- Immediate clinical improvement
- 1 week: morphological remission
- 2 weeks: MRD 0.017%
- Consolidation chemotherapy added

=> Patient remains in CR > 2 years

Before imatinib After imatinib

B Weston et al. J Clin Oncol. 2013

Identification and Treatment of Ph-Like ALL

Plans for COG AALL1131 in 2015

ABL1/ABL2/PDGRFB/CSF1R fusion positive: Add dasatinib in prospective phase and compare outcome to that of pts from retrospective phase

Important Open Questions in Cancer Structural Genomics

What is the molecular basis of clinical phenotypes? Aggressive vs. indolent disease Metastatic vs. localized disease Response to therapy Mechanisms of resistance

Important Open Questions in Cancer Structural Genomics

What is the molecular basis for cure vs. relapse following adjuvant chemotherapy?

Opportunities in colorectal cancer and lung adenocarcinoma

Disease-free Survival in Stage 2-3 Colorectal Cancer Treated with Adjuvant FOLFOX Chemotherapy

NSABP C-08

Influence of Tumor Genetics on Progression-free Survival in Colorectal Cancer Treated With Adjuvant Chemotherapy

Sinicrope et al. Gastroenterology 2014, in press

Opportunity: Completed NCI Adjuvant Trials in Colorectal Ca

Question: Can tumor genomics at diagnosis predict outcome to adjuvant therapy?

Plan: Whole exome/genome sequencing + transcriptome sequencing Compared equal #s of biopsies from cured vs. relapsed cases Identify genetic or gene expression predictors of survival Use training and test set paradigm to validate predictor

Promise: A molecular predictor could reduce the frequency/duration of surveillance => Decreased anxiety for patient and decreased healthcare costs

Benefit of Adjuvant Chemotherapy in Stage 1-3 Non-small Cell Lung Carcinoma

Pignon et al. J Clin Oncol. 2008 26:3552

Opportunity: Completed NCI Adjuvant Trial in NSCLC

ECOG 1505 (~1000 adenocarcinoma biopsy samples)

Question: Can tumor genomics at diagnosis predict outcome to adjuvant therapy?

Plan: Whole exome/genome sequencing + transcriptome sequencing Compared equal #s of biopsies from cured vs. relapsed cases Identify genetic or gene expression predictors of survival Use training and test set paradigm to validate predictor

Promise: A molecular predictor could reduce the frequency/duration of surveillance => Decreased anxiety for patient and decreased healthcare costs

Important Open Questions in Cancer Structural Genomics

- What is the "full" extent of genetic drivers in cancer?
 - Can we define genetic events occurring in >2% of patients?
 - Which genetic events co-occur and which are mutually exclusive? => Define genetic pathways to cancer
 - Will whole genome sequencing discover non-coding driver mutations and cryptic chromosomal rearrangements?

The Mutational Burden of Human Cancer

Mike Lawrence and Gaddy Getz

Many Cancer Drivers With <20% Prevalence Remain Undiscovered

Lawrence et al, Nature 2014

Driver Genes in Lung Adenocarcinoma

TCGA Nature 2014

Crizotinib Produces Prolonged Objective Responses in Lung Adenocarcinoma with ROS1 translocation

R

325

Baseline

R

325

After 7 Weeks

Driver Genes in Lung Adenocarcinoma

TCGA Nature 2014

Power Calculation for Cancer Driver Discovery

Lawrence et al, Nature 2014

Discovery of Cancer Drivers With 2% Prevalence

Lawrence et al, Nature 2014

Cancer Driver Discovery Cohort

Completed Prospective Existing clinical trials clinical trials institutional <u>TCGA</u> -NCI-sponsored (e.g. Alchemist) cancer biopsy -Institutional banks

Prospects in Cancer Functional Genomics

Integration of Functional Genomics and Structural Genomics is Required to Identify Essential Cancer Pathways

Modeling the Diversity of Human Cancer: An Unmet Need

- Genetic analysis has identified recurrent genetic lesions in cancer that range in frequency from 1% - >50% of cases.
- Most cancer cell lines have not been directly compared to the primary tumor using current genomic methods.
- Existing cell line models of common cancer types are suspect biologically and genetically (e.g. prostate CA)
- Models of rare cancer subtypes may be nonexistent or underrepresented
- Models do not exist for many recurrent genetic lesions in human cancer, and for common combinations of lesions
- Existing models do not recapitulate hierarchical relationships of tumor subpopulations (i.e. tumor propagating cells, stroma)

Next Generation Models of Epithelial Cancers

Organoid cultures

Clevers laboratory Sato et al. Gastroenterology 2011 141:1762

Next Generation Models of Epithelial Cancers

Gao et al. Cell 2014 159:176

Next Generation Models of Epithelial Cancers

Conditionally reprogrammed cells

Normal prostate

Normal breast

epi

Normal trachea Hepatocarcinoma

Schlegel laboratory Liu et al. Amer J Pathol 2012 180:599

Using Next Generation Cancer Models to Develop Therapies

Using Next Generation Cancer Models to Develop Therapies

Combo drug screen with Gefitinib

A Next Generation Cancer Model Network

Goals for Cancer Computational Genomics

IOM Report on Precision Medicine Envisioned a Knowledge Network of Disease

Development of the NCI Genomics Data Commons (GDC) To Foster the Molecular Diagnosis and Treatment of Cancer

NCI Genomics Data Commons (GDC) Functionality

Genomic/

data

NCI Genomics Data Commons

- 1. Import and standardize genomic and clinical data from legacy programs
- 2. Harmonize mapping of sequence data to the genome / transcriptome
- 3. Implement state-of-art methods for derived data:
 - mutation calls
 - copy number
 - structural variants
 - digital gene expression
- 4. Maintain data security and manage authorized access
- 5. Provide data for download or computation on a co-localized compute cluster
- 6. Open GDC for upload of new genomic data for comparison with existing data and shared access

Questions?