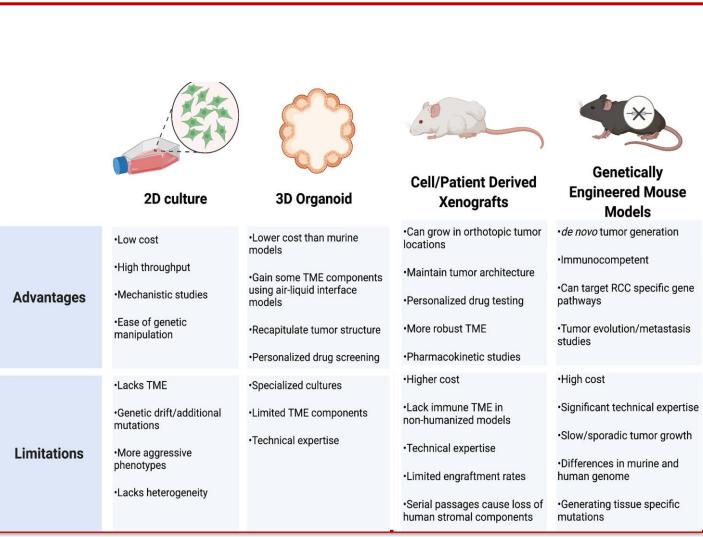
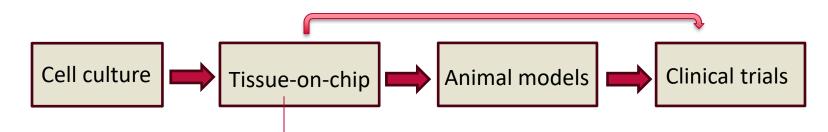
Cancer Tissue-on-chip (ToC) technologies for improved preclinical efficacy evaluation of therapies in oncology (*R01, clinical trial not allowed*) *PAR request*

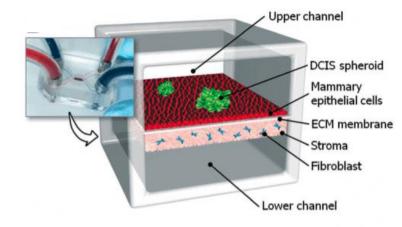
Division of Cancer Treatment and Diagnosis


Leela Avula, CIP Piotr Grodzinski, CIP Michael Espey, CIP Weiwei Chen, DTP Marco Cardone, DTP Brian Sorg, CDP Pat Prasanna, RRP BSA sub-committee Suzanne Baker, St. Jude Trey Ideker, UC San Diego Erle Robertson, UPenn

BSA meeting, December 3, 2024

What is the Problem or Challenge?


Majority of compounds tested in cancer clinical trials fail, despite promising results in preclinical testing

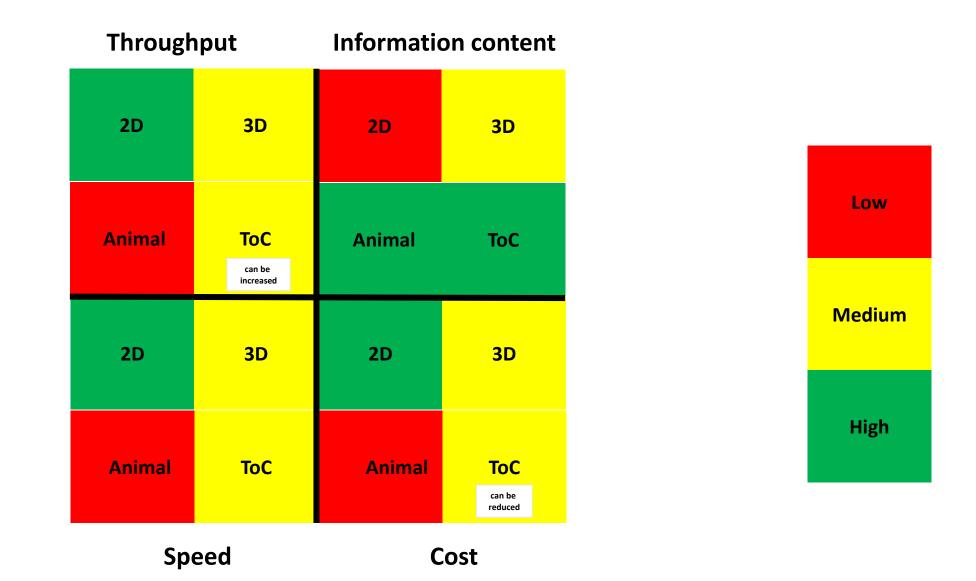

Shapiro, Abel et al. Frontiers in Oncology, 2022

How to Address the Challenge?

- Continue refining *in vivo* animal models
- Enhance in silico modeling in conjunction with AI to improve early selection of APIs for drug development
- Evaluate and further improve tissue-on-chip (ToC) technologies
- Other?
- Tissue-on-chips (ToCs)
 - o are a combination of on-chip multi-cell/tissue organotypic (co)culture and engineered microfluidics
 - o offer improved mimicry of tumor pathobiology and physiology relative to 'static' 2D or 3D cell cultures
- ToCs can be a viable intermediate model for cancer therapy evaluation, but their full potential is yet to be tapped into

- Dynamic perfusion capability
- Replicating the complex microenvironment
- Controlled biomechanical parameters
- High throughput, parallel multiplexed organotypic cultures
- Continuous monitoring

Example of a ToC design


Value Added of Tissue-on-chip

	2D cell culture	3D cell culture	Animal Models	Tissue-on-Chip
Cell-cell interaction	x	0	0	0
Immune cells and stromal cells	x	<mark>X/</mark> 0	0	0
Vascularization	x	X/ 0	0	0
Microenvironment control	x	<mark>×/</mark> 0	<mark>X/</mark> 0	0
Imitation of human (patho)physiology	x	X/ 0	X/ 0	X/ 0
High-throughput screening	0	0	X	0
Model complexity	x	X/ 0	0	0
Ethical constraints	0	0	x	<mark>X/</mark> 0

- ✓ More cell-cell interactions and cross-talk
- ✓ Accommodates organotypic/whole-tissue extended cultures
- ✓ Accommodates immune, vascular and stromal cells
- ✓ Better tumor microenvironment replication and control
- ✓ Stimulates fluid shear stress and dynamics
- ✓ Better imitation of human pathology complexity
- ✓ Throughput, automation and reproducibility
- ✓ Accommodates AI in data processing and interpretation
- ✓ Real-time monitoring and time efficiency
- ✓ Less ethical constraints
- ✓ Versatile and customizable
- ✓ Bridges the gap between preclinical testing and human trials
- ✓ Can reduce testing costs

Figure modified from Sokolowska et al. Organoids 2022, and Li et al. SPJ. 2022

ToC Attributes in Preclinical Testing

Early ToC Commercialization Do we Need more Research? ĊN-BIO

nulate

Spin-off from Donald Ingber's lab, Wyss Institute, Harvard

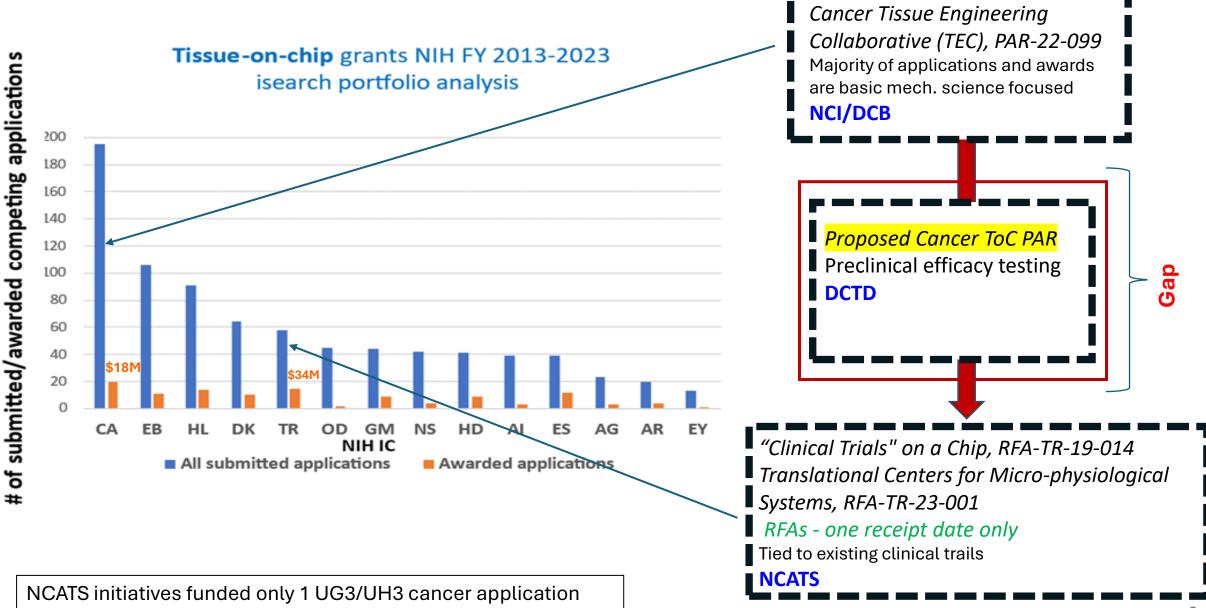
- Single- and multi-tissue/organ chips
- Safety toxicity
- Diseases: cancer and infectious diseases

Needed ToC improvements:

- Validation of cancer tissue/organ chips requires studies different types of cancer drugs that • demonstrate similar efficacies and toxicities in tissue/organ chips to those observed in vivo and with similar PK;
- Sophistication of ToC analysis depends on inclusion of several cell types (cancer cells, endothelial ٠ cells, stromal cells and immune cells) in correct proportions from the same patient into the chip;
- Use of alternate to PDMS materials to build chips needs to be considered. ٠

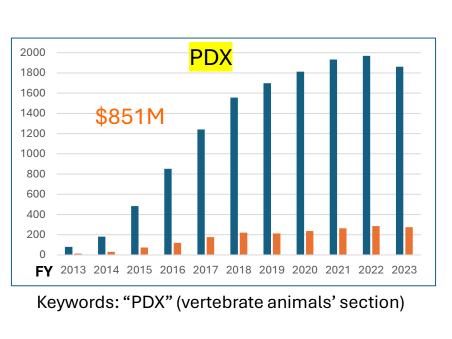
Spin-off from Linda Griffith's lab, Biological Engineering, MIT

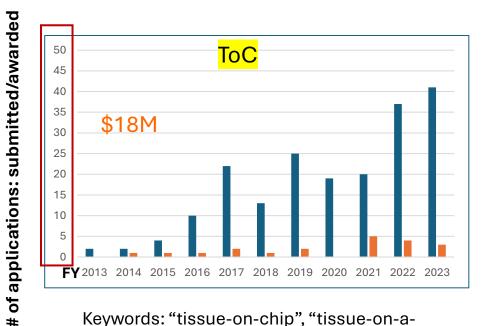
- Single- and multi-tissue/organ chips
- Safety toxicity
- Diseases: nonalcoholic steatohepatitis (NASH), hepatitis B, COVID-19


Organ-on-a-Chip Market Valuation is Set to Skyrocket and Reach US\$ 1,665.91 Million By 2032 | Astute Analytica

New Initiative – Proposed Goals

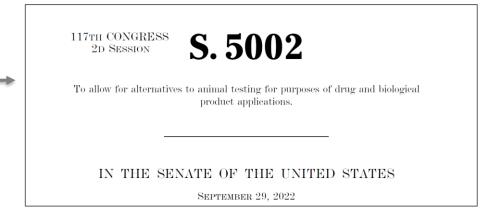
The purpose of this proposed PAR is *to improve pre-clinical efficacy testing of cancer therapies* utilizing ToCs


- Development and optimization of ToC-based cancer therapy efficacy testing platforms with dynamically controlled environment
 - via implementation of new device design features and integration of imaging and sensing tools
 - via incorporation of mixed-cell cultures, including blood-vessel and immune components, to better mimic in vivo conditions
- Comparison of ToC data with that obtained from respective *in vivo* models
- ToC performance proof-of-concept in evaluating different cancer (combination) therapies (chemo/targeted therapies/immunotherapies)
- Achieve wider-spread use of ToC models in (high throughput) cancer therapy efficacy testing
- Improve confidence in ToC assays to be as predictive as established preclinical models
- Understand ToC limitations how well can complex therapies be assessed in ToCs? Single drug/multi-drug combination therapies/targeted therapies?


Justification for the PAR

Portfolio Analysis - Other Technologies

All submitted grant applications to NCI
Awarded grant applications NCI



Keywords: "tissue-on-chip", "tissue-on-achip", "organ-on-chip", "organ-on-a-chip", "cancer-on-chip", "cancer-on-a-chip" "tumoron-chip" or "tumor-on-a-chip"

Justification for the PAR

- NCI portfolio analysis shows limited number of ToC-related submitted/awarded applications
- Most of existing NCI applications on ToCs are focused on basic biology mechanistic studies, rather than
 preclinical drug testing
- Congress-issued FDA modernization Act (2022) and FDA and NIH called for the development of New Alternative Methods (NAMs) to reduce animal testing
- Majority of ToC technologies so far were developed in engineering labs. NCI funding opportunity will enable collaborative efforts with drug developers to strengthen ToC preclinical testing in cancer-adequate environment
- PAR will allow for implementation of Special Review Criteria in NOFO to facilitate focused and adequate review

Proposed Budget

- This is an <u>new</u> R01 concept, will use the PAR mechanism and will use RPG pool funds
- Expected to start in October 2025 and close in January 2028. Will have 2 receipt dates per year
- We expect around 15-20 submissions per receipt date, 4-6 awards annually

Mechanism	Clinical Trial	Awards	Years of PAR	Direct Costs	Year 1 Total Costs
R01	Not allowed	4-6 per year	3	<500K/year/grant	\$2.0-3.5M

Thank you! Questions/comments?

Additional information available in back-up slides below

www.cancer.gov/espanol

www.cancer.gov