The Metastasis Research Network (MetNet)

Joanna M. Watson, PhD
Acting Chief, Tumor Metastasis Branch
Division of Cancer Biology
Metastasis and the “Metastatic Cascade”

• Metastasis accounts for the vast majority of deaths in patients with solid tumors, yet therapeutic strategies to manage metastatic disease are lacking.

• Metastasis was considered the late end product of a linear process, the “metastatic cascade”.

The metastatic cascade
1. Local Invasion & Intravasation
 Angiogenesis, EMT, migration
2. Survival in circulation
 Immune evasion, CTC clusters, platelets binding
3. Arrest in distant organ
 Trapping/specific adhesion
4. Extravasation:
 Physical barriers, seeding
5. Micrometastasis:
 Survival on arrival, dormancy
6. Macrometastatic growth
Metastasis can occur early and often

- Detect disseminated cells in circulation and in secondary sites even before diagnosis
- The likelihood, timing, frequency, and mechanisms of early dissemination for many cancers are unknown
Metastasis can result from concurrent overlapping routes

- Cartoon depicts relationships between the primary tumor and metastatic clones

Monoclonal sequential seeding

Polyclonal seeding

Cross-metastatic seeding

LN = lymph node
M = metastatic clone

Current Challenges in metastasis research

• Tumors preferentially metastasize to specific organs and tissues
 • In general, mechanisms that regulate tropism are not well understood

• Metastatic cells can remain dormant for weeks, months, or years before clinical manifestations
 • In general, mechanisms that regulate dormancy are poorly understood, and likely include strong microenvironmental and systemic components

• Phenotypic plasticity of metastatic cells can underlie therapeutic resistance
 • The role of dynamic molecular, cellular, and microenvironmental interactions are not well characterized and experimental systems are lacking

• Current model systems are not representative
 • Physiologically relevant in vitro and in vivo models that capture the entire metastatic process to mimic that seen in humans are lacking

Obenauf AC, Massague J. Trends in Cancer, 2015
A comprehensive picture of metastasis does not currently exist

Rapid autopsy studies have provided a catalog of sites of metastasis, however:

• Knowledge of metastasis is fragmented because of siloed studies that concentrate on one stage of the “metastatic cascade”
 • Studying each stage in isolation misses the others

• Approaches and technologies that provide a physiological description of overlapping, non-linear processes are limited (i.e., approaches that span scales from cell → tissue → organ → body).

Need: A new view of metastasis that accounts for the dynamic, non-linear, multi-scale physiological interactions required for tumor cell dissemination, colonization, growth, and drug resistance.
Opportunities to advance metastasis research

• New viewpoints on “old” ideas are percolating within the community
 • Metastasis occurs early, is dynamic, and non-linear
 • Cell plasticity is not limited to EMT or MET
 • Cooperativity between multiple cell types contributes to metastasis

• New approaches and tools will facilitate a comprehensive view
 • Surgical approaches that improve human relevance
 • *In vivo* bar coding and lineage tracing tools
 • Advanced imaging techniques for *in vivo* and multi-modal measurements
 • Single cell data collection and integrative analyses
Proposal: The Metastasis Research Network

• Develop a network of 4 – 5 Metastasis Research Centers (U54 mechanism)
• Each center will focus on the intersection of two or more emerging themes that span the metastatic process:
 • The likelihood, timing, and frequency of early dissemination
 • The interactions and crosstalk between metastatic cells, including circulating tumor cells, and other host non-cancer cells or systems (e.g., immune or nervous)
 • The acquisition of, maintenance of, or emergence from metastatic dormancy
 • The response of metastatic cells, including those that are dormant, to therapies
• Teams will be expected to propose multidisciplinary approaches that incorporate appropriate technology and analysis capabilities that lead to a comprehensive and mechanistic understanding of metastasis
What would a Center look like?

• A multi- and inter-disciplinary effort involving:
 • cancer biology, physiology and pathology, bioengineering, biophysics, systems biology, computational analyses

• Encompassing multiple themes simultaneously, for example:
 • From different primary sites to same secondary site
 • Focus: determinants of organotropism
 • Themes: early dissemination and interactions

 • How treatments influence the metastatic process
 • Focus: treatment-associated cell phenotypic and metabolic plasticity
 • Themes: early dissemination, dormancy, and treatment
Portfolio Analysis

- Despite advanced techniques and knowledge, the metastasis-related portfolio across NCI has remained static over the past 5-10 years.

- Portfolio consists of a spectrum of awards, with the majority being investigator-initiated R01 awards that focus on single elements of the metastatic cascade
 - Early events and late events poorly represented
 - Invasion/Migration more readily adaptable to in vitro study

- Portfolio also contains several projects within on-going programs that complement the MetNet, including:
 - DCB: CSBC, PS-ON
 - Trans-NCI: HTAN
Budget and Review considerations

- 4-5 Centers (U54 mechanism)
 - 2-3 projects
 - Shared resources cores (up to 2)
 - Administrative core
 - Dedicated data manager and coordinator
- $1.5M/ U54 total cost per year
- 5 years of support
- $37.5M total costs over 5 years

- Review:
 - Two receipt dates, one per year (2020, 2021).
 - Require review by a Special Emphasis Panel
Justification for use of the RFA and Cooperative Agreement U54 mechanism

• RFA:
 • Dedicated set-aside provides indication of NCI commitment
 • Energize the metastasis research community, and encourage new researchers to the field
 • Multidisciplinary effort using system-level approaches
 • Portal for bringing new researchers to the field

• Cooperative Agreement:
 • Foster interaction and collaboration across the network and with other programs
 • Facilitate interactions and opportunities for junior investigators
 • Facilitate interactions between the network and larger research community
 • Admin supplements for collaborations
 • Borrow from the RAS Initiative playbook for hosting a biannual meeting and/or blog discussion forum
 • Substantial NCI programmatic involvement to help maximize resources for PIs and the NCI
Evaluation of the Network

• Two-tier evaluation process:
 • Annual evaluation of individual centers and projects
 • Consider network participation, progress, accomplishments, publications
 • Evaluation of the network overall
 • Establishment of productive cross-network collaborations (publications/research grant applications),
 • Retention of junior investigators within the metastasis research field,
 • Development/sharing of new technologies and models,
 • Deposition of data in appropriate data bases,
 • Interaction with additional NCI-sponsored programs.
Measurements for the Overall Success of the MetNet

• A more comprehensive understanding of metastasis and how that knowledge can be translated into intervention strategies
• Sustained influx of new R01 applications into the biology of metastasis using systems-level approaches
• Generated resources accessible and useful to the larger research community
• Promotion and sustainability of the metastasis workforce
Pursuing a comprehensive and mechanistic understanding that accounts for the dynamic, non-linear, multi-scale physiological interactions required for metastasis.