Genetic Susceptibility to Prostate Cancer in Men of African Ancestry

Chris Haiman, ScD
December 4, 2018

Center for Genetic Epidemiology
University of Southern California
Prostate cancer disparities

African Americans vs. Whites (and other populations):
- Incidence: 70% greater
 - diagnosed earlier, with more aggressive disease, with greater risk of progression
- Mortality: twice as likely to die from prostate cancer

Many factors likely contribute to prostate cancer disparities:
- sociodemographics, health behaviors, environmental factors, access to care, variation in screening, detection and treatment
- genetics
Genetic ancestry and prostate cancer

Admixture mapping identified risk alleles that track with local genetic ancestry in admixed population

- Admixture scan (n=1,600 AA men): reveals signal at 8q24 (~4 Mb).

Dense genotyping identified multiple risk alleles at 8q24 that contribute to prostate cancer risk.

- Multiethnic Cohort: 4,266 cases and 3,252 controls: African Americans, Whites, Japanese, Latinos, Native Hawaiians
- 7 independent risk alleles in 3 regions

Polygenic risk model for prostate cancer: 8q24

rs6983267

Risk Allele

Ref

ACB ASW ESN GWD LWK MSL YRI CLM MXL PEL PUR CDX CHB CHS JPT KHV CEU FIN GBR IBS TSI

| African | Hispanic | Asian | European |

African Americans, PAR=68%

Whites, PAR=32%

Relative risk compared with individuals carrying none of the seven risk alleles

Haiman et al. Nat Genet 2007
<table>
<thead>
<tr>
<th>Study</th>
<th>Name</th>
<th>Country</th>
<th>Cases</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC</td>
<td>Multiethnic Cohort</td>
<td>USA</td>
<td>2429</td>
<td>2429</td>
</tr>
<tr>
<td>SCCS</td>
<td>Southern Community Cohort</td>
<td>USA</td>
<td>670</td>
<td>1236</td>
</tr>
<tr>
<td>PLCO</td>
<td>Prostate, Lung, Colo and Ov Cancer Screening Trial</td>
<td>USA</td>
<td>286</td>
<td>269</td>
</tr>
<tr>
<td>CPS-II</td>
<td>The Cancer Prevention Study II Nutrition Cohort</td>
<td>USA</td>
<td>76</td>
<td>152</td>
</tr>
<tr>
<td>MDA</td>
<td>Prostate Cancer Studies at MD Anderson</td>
<td>USA</td>
<td>543</td>
<td>474</td>
</tr>
<tr>
<td>IPCG</td>
<td>Identifying Prostate Cancer Genes</td>
<td>USA</td>
<td>368</td>
<td>172</td>
</tr>
<tr>
<td>LAAPC</td>
<td>The Los Angeles Study of Aggressive Prostate Cancer</td>
<td>USA</td>
<td>296</td>
<td>303</td>
</tr>
<tr>
<td>CaP Genes</td>
<td>Prostate Cancer Genetics Study</td>
<td>USA</td>
<td>75</td>
<td>85</td>
</tr>
<tr>
<td>DCPD</td>
<td>Case-Control Study in Washington, DC</td>
<td>USA</td>
<td>292</td>
<td>359</td>
</tr>
<tr>
<td>KCPCS</td>
<td>King County Prostate Cancer Study</td>
<td>USA</td>
<td>145</td>
<td>81</td>
</tr>
<tr>
<td>GECAP</td>
<td>Gene-Environment Interaction in Prostate Study</td>
<td>USA</td>
<td>234</td>
<td>92</td>
</tr>
<tr>
<td>SFPCS</td>
<td>San Francisco Bay Area Prostate Cancer Study</td>
<td>USA</td>
<td>86</td>
<td>37</td>
</tr>
<tr>
<td>FMHS</td>
<td>The Flint Men’s Health Study</td>
<td>USA</td>
<td>135</td>
<td>353</td>
</tr>
<tr>
<td>NCPCS</td>
<td>North Carolina Prostate Cancer Study</td>
<td>USA</td>
<td>214</td>
<td>249</td>
</tr>
<tr>
<td>WFPCS</td>
<td>Wake Forest University Prostate Cancer Study</td>
<td>USA</td>
<td>59</td>
<td>66</td>
</tr>
<tr>
<td>WUPCS</td>
<td>Washington University Prostate Cancer Study</td>
<td>USA</td>
<td>75</td>
<td>153</td>
</tr>
<tr>
<td>SCORE</td>
<td>The Study of Clinical Outcome, Risk and Ethnicity</td>
<td>USA</td>
<td>152</td>
<td>28</td>
</tr>
<tr>
<td>SELECT</td>
<td>Selenium and Vitamin E Cancer Prevention Trial</td>
<td>USA</td>
<td>253</td>
<td>734</td>
</tr>
<tr>
<td>PCPT</td>
<td>Prostate Cancer Prevention Trial</td>
<td>USA</td>
<td>44</td>
<td>129</td>
</tr>
<tr>
<td>NHPC</td>
<td>Nashville Health Prostate Study</td>
<td>USA</td>
<td>179</td>
<td>199</td>
</tr>
<tr>
<td>MOFFITT</td>
<td>Moffitt Prostate Cancer Study</td>
<td>USA</td>
<td>81</td>
<td>49</td>
</tr>
<tr>
<td>BioVu</td>
<td>Vanderbilt Biobank</td>
<td>USA</td>
<td>214</td>
<td>428</td>
</tr>
<tr>
<td>SCPCS</td>
<td>South Carolina Prostate Cancer Study</td>
<td>USA</td>
<td>65</td>
<td>41</td>
</tr>
<tr>
<td>PCaP</td>
<td>North Carolina-Louisiana Prostate Cancer Project</td>
<td>USA</td>
<td>1,060</td>
<td>1,000</td>
</tr>
<tr>
<td>CDPR</td>
<td>Cntr for Prostate Disease Research</td>
<td>USA</td>
<td>131</td>
<td>69</td>
</tr>
<tr>
<td>PROTEuS</td>
<td>The Prostate Cancer and Environment Study</td>
<td>Canada</td>
<td>73</td>
<td>58</td>
</tr>
<tr>
<td>UKGPCS</td>
<td>UK Prostate Cancer Study</td>
<td>UK</td>
<td>384</td>
<td>0</td>
</tr>
<tr>
<td>ProGene/EPICAP</td>
<td>French Prostate Cancer Case-Control Studies</td>
<td>France</td>
<td>121</td>
<td>94</td>
</tr>
<tr>
<td>PCBP</td>
<td>Prostate Cancer in a Black Population</td>
<td>Barbados</td>
<td>246</td>
<td>252</td>
</tr>
<tr>
<td>Karuprostate</td>
<td>French West Indies Prostate Study</td>
<td>Guadeloupe</td>
<td>363</td>
<td>386</td>
</tr>
<tr>
<td>GHS</td>
<td>The Ghana Men’s Health Study</td>
<td>Ghana</td>
<td>498</td>
<td>494</td>
</tr>
<tr>
<td>UGPCS</td>
<td>A Case-Control Study in Uganda</td>
<td>Uganda</td>
<td>521</td>
<td>515</td>
</tr>
</tbody>
</table>

TOTAL: 10,368 10,986
GWAS in AAPC

Conti et al, JNCI 2017

rs72725854
p=5x10^{-105}
Freq=6%

vs. HOXB13: - 0.2% of Whites in U.S. G84E carriers (RR=3); accounts for 5% of hereditary PC
Population-specific risk alleles

13p34 - *IRS2*

17q12 - *ZNF652*

22q12 - *CHEK2*

- 2-5% in African ancestry populations
- 0% in other populations
- RR~1.6

17q12: rs7210100

Haiman et al, Nat Genet 2011
Conti et al, JNCI 2017
GWAS of cancer (through 2016)

- Over 700 cancer loci identified
 - ~80% first discovered in Whites
 - ~15% in East Asians,
 - ~3% in multiethnic scans
 - ~1% in African and Latin Americans.

N~478,000 cases

- European 84%
- African 11%
- East Asian 4%
- Latin American 1%
GWAS of prostate cancer

• PRACTICAL/ELLIPSE NCI GAME-ON Consortium: ~130 studies globally

Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci

Schumacher et al, Nat Genet 2018

• 181 common risk variants have been identified
 – >80% found in GWAS in whites
 – 37% of familial risk (FR) of prostate cancer in whites
 – modest effects (RR~1.05-1.40)

Polygenic Risk Score (PRS)

European Ancestry
~60,000 cases
~60,000 controls
Prostate cancer PRS by population

PRS summary (n=181 risk variants):
- Performance: European > Latino = African = Asian
Do genetic factors contribute to population differences in prostate cancer risk?

14 variants at 8q24

GWAS and fine-mapping in whites

All 181 variants
Multiethnic Studies

• Goal: To combine GWAS data across populations to identify stronger signals in known regions and novel variants with pan-ethnic effects.

• GWAS and fine-mapping meta-analysis:

<table>
<thead>
<tr>
<th>Population</th>
<th>Number of Samples</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cases</td>
<td>Controls</td>
</tr>
<tr>
<td>African</td>
<td></td>
<td>10,368</td>
<td>10,986</td>
</tr>
<tr>
<td>Asian</td>
<td></td>
<td>8610</td>
<td>18,809</td>
</tr>
<tr>
<td>European</td>
<td></td>
<td>88,714</td>
<td>91,940</td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td></td>
<td>2,714</td>
<td>5,239</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>110,406</td>
<td>126,974</td>
</tr>
</tbody>
</table>

Results (preliminary):
• ~60 novel risk variants (~240 total)
• ~90 of the 181 known risk (‘index’) variants have been replaced
Clinical Utility of GWAS-PRS

• Common risk variants (and the PRS) can’t discriminate between a man’s risk of aggressive vs. non-aggressive disease

• Ongoing prostate cancer screening studies that incorporate PRS in the UK and Sweden:
 – STHML3
 – BARCODE (includes AA men)
 – PROFILE

• Need genetic markers of aggressive disease

General male population

FamHist + PRS + rare mutations + PSA + biomarkers + ancestry

targeted screening MRI, biopsies

- Increase detection of aggressive/lethal disease
- Reduce # of biopsies, over-diagnosis of indolent disease
Rare pathogenic mutations in DNA repair genes

BRCA1/2
- 1% of prostate cancer cases carry a mutation
- BRCA1: RR>2
- BRCA2: RR>5
- Carriers develop more aggressive disease and have poor survival

Kote-Jarai et al, Br J Cancer 2011

Pritchard, NEJM 2016

Castro et al, JCO 2013

Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer

692 metastatic PC cases
53,105 ExAC controls

Mutation carriers:
- 12% of metastatic cases
- 3% of controls

Pritchard, NEJM 2016
Rare coding variants and prostate cancer risk in men of African ancestry

- DNA repair and cancer susceptibility gene panel (16 genes)
- Rare pathogenic mutations (protein truncating, ClinVar-missense)

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>African American</td>
<td>995</td>
<td>1447</td>
</tr>
<tr>
<td>Ugandan</td>
<td>486</td>
<td>651</td>
</tr>
<tr>
<td>Total</td>
<td>2098</td>
<td>1481</td>
</tr>
</tbody>
</table>

Mutation carriers:
- 4% of cases
- 2% of controls
- RR=1.82, p=0.004
Rare coding variants and prostate cancer risk in men of African ancestry

• RR ~3-4 for overall prostate cancer (*BRCA2, ATM, PALB2, NBN*)
• Larger effects for aggressive phenotypes

P<0.001 for most RR’s
Rare coding variants and prostate cancer risk in men of African ancestry

Metastatic disease:

- African Americans: <70 metastatic cases
- Ugandans: no information on stage; 32% of cases with PSA>100 ng/ml at dx

P’s<0.001
Rare variant discovery for aggressive prostate cancer: 20,000 cases of European ancestry

Stage 1: Exome seq
- 2,770 Agg cases
- 2,775 Non-agg cases

Stage 2: 500 genes
- 7,300 Agg cases
- 7,300 Non-agg cases

Stage 3/4 & Gleason 8+ or death due to PCa
Stage 1/2 & Gleason < 7

R01 CA196931 selected for validation (Spring 2019)
Research on Prostate Cancer in Men of African Ancestry: Defining the Roles of Genetics, Tumor Markers and Social Stress

- U19 in collaboration with NCI-DCEG Intramural investigators
- Objective: to define sociological and biological factors and their inter-relationships that contribute to aggressive PCa in African American men
- Recruit 10,000 African American men with prostate cancer
 - baseline survey, saliva and tumor samples
- Scientific questions to be addressed:
 - genetic susceptibility (GWAS and exome seq)
 - social factors that contribute to lifetime stress
 - lifestyle factors and health behaviors
 - medical care-related factors (e.g. access to care and screening)
 - tumor-related features: somatic mutations and local inflammation
- Cores: admin, pathology, recruitment, data analysis
- Funding: NCI, NIMHD and PCF

www.RESPONDstudy.org
RESPOND Investigators

<table>
<thead>
<tr>
<th>NAME</th>
<th>INSTITUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christopher Haiman, ScD</td>
<td>USC</td>
</tr>
<tr>
<td>Ann Hamilton, PhD</td>
<td>USC</td>
</tr>
<tr>
<td>David Conti, PhD</td>
<td>USC</td>
</tr>
<tr>
<td>John Carpten, PhD</td>
<td>USC</td>
</tr>
<tr>
<td>David Craig, PhD</td>
<td>USC</td>
</tr>
<tr>
<td>William Gauderman, PhD</td>
<td>USC</td>
</tr>
<tr>
<td>Scarlett Gomez, PhD, MPH</td>
<td>UCSF</td>
</tr>
<tr>
<td>Iona Cheng, PhD, MPH</td>
<td>UCSF</td>
</tr>
<tr>
<td>Mindy DeRouen, PhD, MPH</td>
<td>UCSF</td>
</tr>
<tr>
<td>Salma Shariff-Marco, PhD, MPH</td>
<td>UCSF</td>
</tr>
<tr>
<td>Franklin Huang, MD, PhD</td>
<td>UCSF</td>
</tr>
<tr>
<td>Angelo De Marzo, MD, PhD</td>
<td>UCSF</td>
</tr>
<tr>
<td>Tamara Lotan, MD</td>
<td>Johns Hopkins</td>
</tr>
<tr>
<td>Karen Sfanos, PhD</td>
<td>Johns Hopkins</td>
</tr>
<tr>
<td>Xiao-Cheng Wu, MD, PhD</td>
<td>LSU</td>
</tr>
<tr>
<td>Rosemary Cress, PhD</td>
<td>Public Health Inst.</td>
</tr>
<tr>
<td>Kevin Ward, PhD, MPH</td>
<td>Emory University</td>
</tr>
<tr>
<td>Karen Pawlish, ScD, MPH</td>
<td>N. J. Dept. of Health</td>
</tr>
<tr>
<td>Antoinette Stroup, PhD</td>
<td>Rutgers University</td>
</tr>
<tr>
<td>Jong Park, PhD, MPH</td>
<td>Moffitt Cancer Center</td>
</tr>
<tr>
<td>Thomas Sellers, PhD, MPH</td>
<td>Moffitt Cancer Center</td>
</tr>
<tr>
<td>Jennifer Beebe-Dimmer, PhD, MPH</td>
<td>Karmanos Cancer Inst.</td>
</tr>
<tr>
<td>Melissa Bondy, PhD</td>
<td>Baylor University</td>
</tr>
<tr>
<td>Stephen Chanock, MD</td>
<td>NCI</td>
</tr>
<tr>
<td>Sonja Berndt, PhD</td>
<td>NCI</td>
</tr>
<tr>
<td>Michael Cook, PhD</td>
<td>NCI</td>
</tr>
<tr>
<td>Meredith Yeager, PhD</td>
<td>NCI</td>
</tr>
</tbody>
</table>

Multi-disciplinary team: epidemiologists, oncologists, urologists, pathologists, genomicists, bioinformaticians and biostatisticians with track records in population-based and clinical prostate cancer and health disparities research

EAC: Lee Green (Moffitt), Scott Tomlins (Michigan), Daniel Schaid (Mayo), Isaac Powell (Wayne St.), Amani Allen (Berkeley), Westley Sholes (Advocate)

www.RESPONDstudy.org
• Goal: Recruitment of 10,000 African American prostate cancer cases
• Contact and recruitment through SEER and NPCR cancer registries covering 7 states representing ~40% of African American men in the U.S.

www.RESPONDstudy.org
Challenges in Recruitment

Focus groups of African American prostate cancer patients at each recruitment site (n=7-10) reviewed study materials and were asked about how we can build trust:

- What is the benefit for me or my family?
- Clearly define the disparity.
- Research vs. testing
- Transparency
- Confidentiality of data/results
- Buy-in from Black community leaders, institutions, organizations & churches, etc.
- Include African American researchers/colleges
- A celebrity face for the study would build credibility
- Include Black study staff members and face to face interaction
- Publicize to build credibility
- Health education & literacy
- Keep us informed
GWAS of Cancer

AAPC:
- >30 studies over >25 years
- 10,000 cases (2,700 aggressive)

RESPOND:
- 5 years
- 10,000 cases (3,000 aggressive)
- GWAS: ~20,000 cases (5,700 aggressive)
- Exome seq: ~20,000 cases + controls
Acknowledgements

Multiethnic Cohort
- David Conti
- Fred Schumacher
- Grace Cheng
- Lilit Chemenyan
- Loic Le Marchand
- Lynne Wilkens

PRACTICAL/ELLIPSE
- Ros Eeles
- Zsofia Kote-Jarai
- Doug Easton
- Ali Amin Al Olama
- Hidewaki Nakagawa
- Fredrik Wiklund
- Graham Giles

Uganda
- Stephen Watya
- Alex Lubwama

AAPC Consortium
- Bill Blot
- Stephen Chanock
- Sue Ingles
- Sonja Berndt
- Sara Strom
- Janet Stanford
- Rick Kittles
- William Isaacs
- Susan Gapstur
- Ryan Diver
- Victoria Stevens
- Curtis Pettaway
- Edward Yeboah,
- Yao Tettey
- Richard B. Biritwum
- Andrew A. Adjei
- Evelyn Tay
- Jianfeng Xu
- Michael Cook
- Fergus Couch

AAPC Consortium
- Lisa B. Signorello
- Wei Zheng
- Barbara Nemesure
- John Carpten
- Anselm Hennis
- Adam S. Kibel
- Benjamin Rybicki
- Christine Neslund-Dudas
- Ann Hsing
- Phyllis J. Goodman
- Eric A Klein
- Graham Casey
- John S. Witte

Funding
- RESPOND: NCI/NIMHD, Cancer Moonshot: U19 CA214253
- NCI U19 GAME-ON/ELLIPSE: U19 CA148537
- AAPC/Others: R01 CA196931, R01 CA165862, U01 CA164973, RC2 CA148085, U01 CA1326792, U01 HG004726, R01 CA063464

RESPOND
- Kevin Ward
- Jennifer Beebe-Dimmer
- Angelo Demarzo
- Mindy DeRouen
- Salma Shariff-Marco
- Meredith Yeager
- Sonia Berndt
- Michael Cook
- Stephen Chanock
- David Craig
- Susan Gundell
- Karen Pawlish
- Antoinette Stroup
- Jong Park
- Tom Sellers
- David Conti
- Melissa Bondy
- Franklin Huang