

Does Cancer Cell State Matter?

Moving from DNA genotype to RNA phenotype-directed therapies in cancer

Alex K. Shalek MIT (IMES, Chemistry, KI) | Ragon | Broad 2024 National Cancer Advisory Board and Board of Scientific Advisors for the NCI

Disclosures

I have the following financial relationships to disclose:

Consultant for: Honeycomb Biotechnologies, Cellarity, Ochre Bio, Bio-Rad, FL86, Relation Therapeutics, IntrECate Biotherapeutics, Passkey Therapeutics, Fog Pharma, and Dahlia Biosciences

Stockholder in: Honeycomb Biotechnologies, Cellarity, Ochre Bio, Relation Therapeutics, IntrECate Biotherapeutics, Santa Ana Bio, Passkey Therapeutics, and Dahlia Biosciences

Funding: See acknowledgements

Matching Patients With Effective Therapies

DNA mutations are the cornerstone of precision medicine

How Have We Done?

3 Assumes DNA alterations are responsible for altered cell function and drug response.

NCI—MATCH Trial; Le Tourneau et al, *J Natl Cancer Inst* (2015); Massard et al, *Cancer Discov* (2017); Sicklick et al, *Nature Med* (2019); Middleton et al, *Nature* (2020); Letai et al, *Cancer Cell* (2021); van Tilburg et al, *Cancer Discov* (2021)

Mutations Occur In Cells

Cancer is more than altered DNA

What Is A Cell?

Cellular identity and function are integrative properties

What Is A Cell?

Cellular identity and function are integrative properties

Captures cell function and environmental context

Shalek et al, *Nature* (2013); Shalek et al, *Nature* (2014); Macosko et al, *Cell* (2015); Gierahn et al, *Nature Meth* (2017); Ordovás-Montañés et al, *Nature* (2018); Hughes et al, *Immunity* (2020); Kazer et al, *Nature Med* (2020); Ziegler et al, *Cell* (2020); Ziegler et al, *Cell* (2021); etc.

Cancer Cell Function Is Represented By State

Functional disease phenotypes are integrative properties

How can we study cell state?

Profiling Cell State

Shalek et al, Nature (2013); Shalek et al, Nature (2014); Macosko et al, Cell (2015); Tirosh et al, Science (2016)

from cells to systems

Capturing Different Molecular Features

A Integrate Pipeline To Define & Model Cell States

Proof of concept in Pancreatic Cancer (PDAC)

Are There Functional Consequences To Changing State?

Drug response shifts are reversible

from

cells to systems

Functional Consequences To State Change - State Specific Screening?

Classes of drugs are differentially sensitive within an isogenic patient model

- The "scClassical" state is more sensitive to chemotherapeutic agents
- The "scBasal" state of the same model is more sensitive to MAPK pathway inhibitors (MEK and ERK inhibitors)
- We are missing critical features relevant to drug response by not preserving cell state in cancer!

How Does This Align With Clinical Observations?

State-aligned **models** response to chemotherapy

Isogenic models cell lines and organoids

State-stratified **patient** response to chemotherapy

Extending The Approach

Cross-cancer effort to target cell state PDAC ► Other cancers? Workflow In vivo 1 reference maps Optimize models 2) to accurately reflect cell states × 00 * Identify 3 state-specific targets

Extending The Approach

Cross-cancer effort to target cell state

Andrew Navia

Mifrah Hayath

TCGA snRNA-seq (w/ NCI) Pan-cancer nuclei UMAP visualization

Extending The Approach

Building A Cell State Discovery Engine To "Complete The Square"

Linking cell state to druggable vulnerabilities across cancers

Cell state benchmarking, vetting new biomarkers, pan-cancer and disease-specific target identification

Thank You!!!

