Cancer Screening Research Network/Multi-Cancer Early Detection Evaluation

Lori Minasian, MD, Deputy Director
Philip E. Castle, PhD, MPH, Director
Division of Cancer Prevention, NCI
I think I'd like to have an MCED test, Doc, but which one?
Purpose for a Cancer Screening Research Network

❖ Develop the network infrastructure to efficiently conduct cancer screening clinical trials and other important screening studies.

❖ Initial effort is to conduct a feasibility (Vanguard) study in preparation for a large randomized controlled trial (RCT) to evaluate Multi-Cancer Early Detection (M.C.E.D.) assays for the purpose of cancer screening.
Clinical Evaluation of Screening Modalities is Needed

New emerging technologies are coming forward for commercialization without systematic evaluation for their use in the process of cancer screening.

- Pathways for biomarker assays to be used clinically without a rigorous assessment of clinical benefits (e.g., mortality reduction) and potential harms (e.g., morbidity due to treatment of indolent disease)

Studies are needed to address challenges with using M.C.E.D. assays for cancer screening

- How best to screen for multiple cancers with different latencies?
- How to effectively coordinate care after a positive test result?
Clinical Evaluation of Risk-Based Screening Strategies

Trials are needed to evaluate strategies that aim to refine risk stratification of imaging findings and determine when to defer biopsy.

- Lung cancer: indeterminant pulmonary nodules
- Breast cancer: BI-RADS 4a/4b downgrading to BI-RADS 3
- Prostate cancer: Outcomes of active surveillance in patients with low-grade cancer

Trials are needed to evaluate risk stratification for screening

- Use of risk scores (e.g., PRS) to guide who needs screening, how frequently, and how to manage a positive screen
- Modifying the starting age for a screening modality:
 - Colorectal cancer: early screening vs standard screening for colorectal cancer
Approach and Rationale for the Cancer Screening Research Network (CSRN)

DCP developed the proposed CSRN in collaboration with DCCPS to address questions related to the cancer screening continuum of care:

- Efficacy, effectiveness, best practices, adoption, adaption, implementation, etc. for each step in this continuum

Cancer screening trials require health care providers other than oncologists:

- Screening is much more than the test itself. Cancer screening is a process involving multiple steps and non-oncology medical specialists.
- Need sites and clinical investigators (e.g., gynecologists, primary care, gastroenterologists, etc.) who are experienced in cancer screening.
Approach and Rationale (continued)

Site investigators to contribute scientifically to the design of the trial:

- Identifying/implementing workflow and diagnostic work-up for the cancer screening (especially, for a positive M.C.E.D. test result)
- Assessing the potential harms, adverse effects, and other unexpected issues

Need contemporary communication strategy:

- Integrating trial- and local-level communication and recruitment efforts
CSRN Objectives

Establish the infrastructure needed to implement screening RCTs and other studies of screening and management for prevention/interception:

- Start with the Vanguard study

Conduct cancer screening trials to evaluate emerging technologies for cancer screening:

- Conduct clinical utility trials e.g., biomarkers emerging from EDRN

Conduct cancer screening studies to evaluate other aspects of cancer screening, including clinical workflow and coordination of care:

- Adaption and implementation of screening strategies for diverse practice settings
- Risk-informed screening and management
- Pragmatic trials of screening
Organizational Structure of CSRN

Utilizing the NCI Clinical Trials Enterprise System

Coordinating and Communication Center (One UG1 grant)

- Cancer screening leadership
- Operations and coordination for development/conduct of trials and studies
- Communications, recruitment and retention expertise
- Protocol development, monitoring and auditing, and training

Data Management & Statistical Center (One UG1 grant)

- Statistical expertise for study design & analysis
- Data management
- Coordination with Biorepository
Organizational Structure of CSRN (Continued)

Accrual, Enrollment and Screening Sites (ACCESS) (10-15 UG1 grants)

- Initially 10-15 UG1-funded CSRN sites; additional sites will be needed for the MCED RCT specifically
- Investigators with expertise in cancer screening and history of recruiting participants onto screening and prevention clinical trials and studies
- Institution with demonstrated accrual and retention of participants on disease screening clinical trials, especially cancer screening or prevention
- Variety of healthcare settings (academic, community, healthcare systems, consortia and/or practice-based research networks)
- Demonstrated history of recruiting underserved population
CSRN Structure

Coordinating and Communications Center (CCC) [UG1]

Data Management and Statistical Center (DMSC) [UG1]

Steering Committee

Web Portal for Participant Use

Participant Advisory Committee

10-15 ACCrual, Enrollment and Screening Sites (ACCESS) [UG1s]

Academic Center

Healthcare System

Practice Based Network

Community Network

Practice Based Network

Community Network

Consortia

Healthcare System

Academic Center
Portfolio Analysis

R01 Cancer Prevention and Control Clinical Trials Grant Program (PAR-21-035)
- Clinical trials evaluating the operating characteristics for cancer early detection technologies
- Communications, recruitment and retention expertise
- No current studies of M.C.E.D. technologies

NCI Community Oncology Research Program (NCORP)
- Successful network composed primarily of oncology practices and investigators
- Challenges exist to recruit participants to certain types of screening trials
Justification for the RFA and Cooperative Agreement

Substantial coordination and interaction needed from NCI

- Use of the *existing* clinical trials infrastructure
 - CTSU, CIRB, CTIS, Monitoring/auditing
- Protocol review process
- Coordination of specimen collection and tracking

Substantial NCI input for the statistical methods and modeling of the data from the Vanguard and the large RCT

Substantial resource allocation

- Set-aside funding to assure adequate resources for the Vanguard study
1st CSRN Study:
The Vanguard Study
Background on M.C.E.D. assays

Each M.C.E.D. assay measures different analytes in blood:

- There are many markers in development (e.g., patterns of DNA methylation, DNA fragmentation, RNA sequences, proteins, etc.).
- Each M.C.E.D. assay detects a different set of cancer types.

A positive-test result is a signal for cancer but does not diagnose cancer:

- Some tests suggest a “tissue of origin”.
- Some tests require extensive imaging after a positive M.C.E.D. result.

Some assay companies continue to refine the algorithms for determining a positive versus negative result.
Many Unknowns about Screening for Cancer with M.C.E.D. Assays

Unknown if screening a population of asymptomatic people for cancer with M.C.E.D. assays will result in a mortality reduction from cancer.

Harms from using M.C.E.D. assays to screen for cancer are unknown:

- What kind/how many diagnostic tests are needed to make a cancer diagnosis?
- What happens if following a positive M.C.E.D test, you do not find a cancer?
- How many people will be subjected to unnecessary invasive procedures and suffer from various complications of those procedures?
- Will people stop standard of care screening if get a negative M.C.E.D. test?
- Will a blood test make screening more accessible or exacerbate disparities?
- Will these assays lead to overdiagnosis of indolent cancers?
Study Design Workshop in October 2021

NCI Staff provided the rationale and schema for large randomized controlled trial and the feedback was:

- Agreement across health care experts that NCI needs to evaluate M.C.E.D. assays for clinical benefit.
- Emphasis on the need to rigorously capture and understand harms from using M.C.E.D. assays for cancer screening.
- Strong support to conduct a study to assess feasibility of randomization, the clinical workflow for the diagnostic pathway, and other issues (“The Vanguard Study.”)
Request for Information (NOT-CA-22-033)

Seeking input from developers of M.C.E.D. assays on their readiness (and willingness) to participate in an NCI-sponsored clinical utility screening trial

Released January 21, 2022, Closed March 21, 2022

18 Responses:

- 17 developers of assays
 - 14 companies
 - 3 academic centers
- One request to be a participant!!!!

➢ 9 assays using cell free DNA
➢ 3 assays based upon circulating tumor cells
➢ 5 assays based upon other analytes

(See Supplement Slide #2 for examples of the emerging MCED testing technologies)
Schema for Step-Wise Validation

<table>
<thead>
<tr>
<th>Minimum Performance Qualifications</th>
<th>Reference Set Assessment</th>
<th>Vanguard Study</th>
<th>Randomized Controlled Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytic thresholds</td>
<td>Collect biospecimens from ≥1,000 cases and 1,000 controls with special attention given to cases of early-stage cancers</td>
<td>~24,000 people</td>
<td>Tentatively: ~225,000 people</td>
</tr>
<tr>
<td>Peer-reviewed, published clinical study on diagnostic performance on a minimum number of cases</td>
<td>Allow for early analytic verification of up-and-coming new tests and confirm analytic properties of candidate tests prior to entering clinical trial program</td>
<td>~8,000 people per arm</td>
<td>~75,000 people per arm (2 arms intervention arms to start)</td>
</tr>
<tr>
<td>Throughput and other logistic considerations</td>
<td>▪ 1 test per arm; 2 tests</td>
<td>1 standard-of-care control arm</td>
<td>1 test per arm</td>
</tr>
<tr>
<td></td>
<td>▪ 2 screens, one year apart</td>
<td>Two screens, one year apart</td>
<td>1 standard-of-care control arm</td>
</tr>
<tr>
<td></td>
<td>▪ Intended to inform the larger trial</td>
<td>Subjects may be rolled into the larger trial</td>
<td>ages 45-70 years</td>
</tr>
<tr>
<td></td>
<td>▪ Throughput and other logistic considerations</td>
<td></td>
<td>3-5 annual screens</td>
</tr>
</tbody>
</table>

Go / No-Go: ~24,000 people

Go / No-Go: ~8,000 people per arm

Go / No-Go: 1 test per arm; 2 tests

Go / No-Go: 1 standard-of-care control arm

Go / No-Go: Two screens, one year apart

Go / No-Go: Intended to inform the larger trial

Go / No-Go: Subjects may be rolled into the larger trial

Tentatively: ~225,000 people

- ~75,000 people per arm (2 arms intervention arms to start)
- 1 test per arm
- 1 standard-of-care control arm
- ages 45-70 years
- 3-5 annual screens
- over-sampling underrepresented persons
The Vanguard Study

Randomization

Control Arm

MCED 1 Arm

MCED 2 Arm

All Arms Offered Standard of Care Cancer Screenings

Interventions

No Additional Tests Control Arm

MCED 1 Tests for Cancers A, B and C

MCED 2 Tests for Cancers C, D and E

Objectives of Vanguard Study

- Assess participant willingness for randomization
- Determine adherence to testing and diagnostic follow-up
- Evaluate feasibility of protocol-defined diagnostic workflows
- Determine reliability and timeliness of blood specimen testing and return by MCED companies
- Identify facilitators and barriers to recruitment/retention/compliance of diverse participant groups

Estimated sample size for the Vanguard is 8,000 persons per arm
Sample Size for The Vanguard Study

Large numbers of asymptomatic individuals will be needed to have sufficient numbers of screen positives (positive assay results):

- Assay detects several different cancers, so need sufficient numbers of diagnostic workups in different cancers

Based upon the current published data from existing M.C.E.D. assays:

- ~1% of assays results will be positive
- ~60% of those will have a diagnostic resolution
- One of the major objectives of the Vanguard is the development of a standard approach to the diagnostic process and collection of the data
- An estimated 8,000 persons per arm for 3 arms for 164 screen + to put some reasonable confidence intervals (CI) around diagnostic resolution (i.e., 60.0%; 95%CI = 52.5-67.5%)
Possible Platform Randomized Control Trial Design

Randomization
- Control Arm
- MCED 1 Arm
- MCED 2 Arm
- MCED 3 Arm

Interventions
- No Additional Tests Control Arm
- MCED 1 Tests for Cancers A, B and C
- MCED 2 Tests for Cancers C, D and E
- MCED 3 Tests for Cancers E, F and A

Primary Endpoints
- All Cancer Deaths Measured
- Deaths Rates from Cancers A, B and C Compared to Control Arm
- Deaths Rates from Cancers C, D and E Compared to Control Arm
- Deaths Rates from Cancers E, F and A Compared to Control Arm
MCED RCT Key Points

- Overarching Goals:
 - **Vanguard**: Assess Feasibility and Finalize RCT Design and Logistics
 - **RCT**: Assess Benefits, Harms, and the Generalizability of these Tests

- Assay agnostic

- Multi-Arm Platform Design allows dropping tests that do not perform well, and adding new arms for promising new tests

- Data sharing according to FAIR principles

- Biorepository: Validation of new tests, natural history studies, comprehensive characterization of tumors potentially at molecular stages/states that we have never observed (catalyzing new interception and therapeutic development), supports the NCI MCED program (See Supplemental Slide 2)
Ongoing Activities of the NCI M.C.E.D. Trial Team

NCI Staff have started key intramural-extramural working groups:

- Assay Working Group:
 - Meeting with respondents to the RFI and other sponsors of assays to consider readiness and willingness to incorporate assays into NCI studies.

- Diagnostic Pathway Working Group:
 - Evaluating how best to develop diagnostic pathways for study protocols

- Ethics and Equity Working Group:
 - Developing mechanisms for capturing participant understanding of M.C.E.D. technologies and cancer screening in general,

- Trial Design Working Group
Budget for CSRN and The Vanguard Study (Not the RCT)

Anticipate funding one CCC, one DSMC and 10-15 ACCESS sites:

- (VA/DOD is interested and considering participation)
- First year of funding $15.5M; total $73.5M for 4 years of funding

<table>
<thead>
<tr>
<th></th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinating Center</td>
<td>$1.5M</td>
<td>$2.0M</td>
<td>$2.0M</td>
<td>$2.0M</td>
<td>$7.5M</td>
</tr>
<tr>
<td>Data Management</td>
<td>$1.0M</td>
<td>$2.0M</td>
<td>$2.0M</td>
<td>$2.0M</td>
<td>$7.0M</td>
</tr>
<tr>
<td>Sites (10-15)</td>
<td>$8.0M</td>
<td>$9.0M</td>
<td>$9.0M</td>
<td>$9.0M</td>
<td>$35.0M</td>
</tr>
<tr>
<td>Contracts:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTSU/CIRB/CTIS</td>
<td>$4.0M</td>
<td>$3.5M</td>
<td>$4.0M</td>
<td>$4.0M</td>
<td>$15.5M</td>
</tr>
<tr>
<td>Biorepository</td>
<td>$1.0M</td>
<td>$1.5M</td>
<td>$1.0M</td>
<td>$1.0M</td>
<td>$4.5M</td>
</tr>
<tr>
<td>Assay Cost Sharing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$4.0M</td>
</tr>
<tr>
<td>Total/yr.</td>
<td>$15.5M</td>
<td>$18.0M</td>
<td>$18.0M</td>
<td>$18.0M</td>
<td>$73.5M</td>
</tr>
</tbody>
</table>
NCI M.C.E.D. Clinical Trial Team

DCP
• Philip Castle
• Lori Minasian
• Christos Patriotis
• Paul Pinsky
• Phil Prorok
• Sudhir Srivastava
• Carol Weil
• Kara Smigel
• Jack Lee
• Gwen Moulton

DCEG
• Hormuzd Katki

DCTD
• Lyndsay Harris

DCCPS
• Paul Han

NCI/OD
• Tony Dickherber (CSSI)
• Kathleen Carroll (TTC)
• Michael Pollack (TTC)

NIH/ORWH
• Sarah Temkin

FDA
• Wendy Rubenstein
• Dan Edelman
Thank you!
Supplemental Slide 1: Examples of MCED Assays

<table>
<thead>
<tr>
<th>Company</th>
<th>Assay</th>
<th>Technology</th>
<th>Lung</th>
<th>CRC</th>
<th>Breast</th>
<th>Pancreas</th>
<th>Liver</th>
<th>Esophagus</th>
<th>Stomach</th>
<th>Ovary</th>
<th>Prostate</th>
<th>Bladder</th>
<th>Kidney</th>
<th>Uterus</th>
<th>H&N</th>
<th>Lymphoma</th>
<th>Leukemia</th>
<th>Plasma Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adela Bio</td>
<td>cfMeDIP-seq</td>
<td>cfDNA fragmentomics</td>
<td></td>
</tr>
<tr>
<td>Biological Dynamics</td>
<td>Tr(ACE)</td>
<td>EV proteins; AI</td>
<td></td>
</tr>
<tr>
<td>Bluestar Genomics</td>
<td>BluestarMCED</td>
<td>cfDNA 5hmC-seq; fragmentomics</td>
<td></td>
</tr>
<tr>
<td>Burning Rock</td>
<td>OverC™</td>
<td>ELSA-seq</td>
<td></td>
</tr>
<tr>
<td>Caris Life Sci</td>
<td>M1GPSai</td>
<td>cfDNA/cfRNA NGS; AI</td>
<td></td>
</tr>
<tr>
<td>Delfi Dignostics</td>
<td>D ELF</td>
<td>cfDNA fragmentomics</td>
<td></td>
</tr>
<tr>
<td>Early Diagnostics</td>
<td>cf Methyl-Seq</td>
<td>cfDNA mC-NGS</td>
<td></td>
</tr>
<tr>
<td>Exact Sciences</td>
<td>CancerSEEK</td>
<td>cfDNA NGS; protein markers</td>
<td></td>
</tr>
<tr>
<td>Freenome</td>
<td>FMBT</td>
<td>Multi-Omics/AI</td>
<td></td>
</tr>
<tr>
<td>Grail</td>
<td>Galleri™</td>
<td>CpG-cfDNA NGS</td>
<td></td>
</tr>
<tr>
<td>LungLifeAI</td>
<td>LungLB</td>
<td>CTC FISH; Imaging AI</td>
<td></td>
</tr>
<tr>
<td>Natera</td>
<td>Signatera™</td>
<td>cfDNA NGS; protein markers</td>
<td></td>
</tr>
<tr>
<td>Precision Epigenomics</td>
<td>Sentinel-10™</td>
<td>CpG-cfDNA qPCR</td>
<td></td>
</tr>
<tr>
<td>20/20 Gene Systems</td>
<td>OneTEST</td>
<td>circul. Cancer Ag's; AI</td>
<td></td>
</tr>
</tbody>
</table>