Interim Recommendation Areas

1. Investments to leapfrog data sharing for high-value datasets
2. Harmonization of terminology between cancer research data and clinical care data
3. Support of data science training at the graduate level
4. Opportunities for funding challenges and prizes

Accepted by NCAB August 2018
Additional Recommendation Areas

1. Additional areas of support for data science training and workforce development
2. Building machine learning infrastructure for cancer research
3. Facilitating the appropriate use of real-world data
4. Enabling the cultural shift toward data sharing
Initial Recommendation on Data Science Training: Increase the number of training programs and trainees in cancer data science

• Dedicate a specific T32 training program in cancer data science

• Contribute to existing NIH training programs
 • NLM T15 training programs
 • NIGMS Medical Scientist Training program

• Develop a short-term training program for clinicians and biological scientists

Accepted by NCAB August 2018
Recommendation 1: Data Science Training and Workforce Development

Partner w/ organizations such as NSF

Support and engage computational scientists who want to work in cancer research
- Opportunities for biologically relevant training
- Establish prestigious fellows

Interim recommendations
- T32
- T15
- MSTP
- Short term training

Create training grants to support cross-domain, hybrid researchers

Develop a catalog of data science training resources
Convene a data science training workshop

Add data science training opportunities

Computational
Hybrid
Biological/clinical

K-12 Undergraduate Graduate & Medical Students Post-doctoral Early-career Established
Recommendation 2: Machine Learning (ML)

- Develop targeted machine learning (ML) methodology for cancer research
 - Artificial Intelligence (AI) ethics
 - ML infrastructure for drug discovery
 - Automation of data curation
 - Effective translation of ML methodologies into clinical care
- Compile large, diverse datasets for training and ML algorithms
- Develop new funding opportunities for ML research to attract a broad ML community to cancer research
Recommendation 3: Real World Data (RWD)

• Convene stakeholders around a RWD metadata model to describe the completeness and quality of RWD

• Create a RWD framework and criteria for evaluating and populating key concepts from EHRs and other RWD sources
 • Build off of existing frameworks such as PRISSMM, mCODE

• Demonstrate the utility of RWD in a series of Learning Healthcare Systems reference implementations
 • NCI clinical trials leveraging RWD to:
 • Design eligibility criteria
 • Supplement recruitment to a standard of care trial arm
 • EHR implementation of RWD framework and demonstration of utility in driving use cases
Recommendation 4: Enabling the cultural shift toward data sharing

• Develop best practices for consent/common consent language
• Streamline data sharing policy and requirements, including access to data
• Provide appropriate funding and resources to support data sharing
• Develop training for data management processes and policies
• Create systems to attribute and credit investigators for sharing data
Data Science Opportunities for the NCI

Interim Recommendations

National Cancer Advisory Board
Ad hoc Working Group on Data Science

August 14, 2018
New WG formed by Dr. Sharpless/NCAB

Dec-April
Co-Chairs identified
Members finalized/confirmed
Possible priority areas identified

F2F meeting at NCI
Charge to WG
Discussion of priority areas for data science
Brainstorming
Consensus and identification of longer-term priority areas
Prioritization and development of short-term targeted areas

Full WG virtual meeting
Discussion of draft recommendations

June-July
Subgroup meetings to flesh out and develop initial recommendation areas

Leapfrog for data sharing
Terminology harmonization
Training
Challenges/prizes
Initial Recommendation Areas

1. Investments to leapfrog data sharing for high-value datasets
2. Harmonization of terminology between cancer research data and clinical care data
3. Support of data science training at the graduate level
4. Opportunities for funding challenges and prizes
Recommendation 1: Investments to leapfrog data sharing for high-value datasets

• Resources to support
 • Identification
 • Enrichment
 • Curation
 • Harmonization
 • Annotation
 • Publishing

• Examples of high-value datasets
 • Those fully collected and annotated but not yet shared in a public repository
 • Datasets that would be enhanced by additional data generation and/or collection (e.g., genomic datasets needing additional clinical annotation)

Subgroup members:
• John Carpten
• Warren Kibbe
• Mia Levy
• Vince Miller
• Charles Sawyers
• Nick Wagle
Recommendation 2: Harmonize terminologies between cancer research and clinical care

• Augment EHR data standards to further bridge clinical care and cancer research

• Fund research related to achieving near clinical trial grade data within traditional clinical care settings

• Identify and prioritize existing standards bodies and activities

Subgroup members:
• George Hripcsak
• Mimi Huizinga
• Warren Kibbe
• Michelle Le Beau
Benefits of harmonized terminologies

• Increase the utility and ease of incorporation/integration of clinical care data from EHRs into cancer research

• Enable more efficient research, better patient care, and better real-world evidence generation

• Enhance integration of the cancer and non-cancer research communities
Recommendation 3: Increase the number of training programs and trainees in cancer data science

• Dedicate a specific T32 training program in cancer data science
• Contribute to existing NIH training programs
 • NLM T15 training programs
 • NIGMS Medical Scientist Training program
• Develop a short-term training program for clinicians and biological scientists

Subgroup members:
• Regina Barzilay
• Amanda Haddock
• Rebecca Jacobson
• Anne-Marie Meyer
• Sylvia Plevritis
• Kim Sabelko
Recommendation 4: Sponsor a series of data science challenges

• Potential challenge topics (~4-8 per year)
 • Drug response prediction
 • Discovery of multi-omic prognostic biomarkers
 • De-convolution of heterogenous tumors
 • Cancer diagnosis, grading, and staging
 • Facility of data access and integration from the ethical, legal, and social implications standpoint

• Consider beginning with an “idea challenge” to identify the appropriate challenge topic/task/question

Subgroup members:
• Regina Barzilay
• Amanda Haddock
• Michelle Le Beau
• Lincoln Stein
Benefits of data science challenges

• Spur research in computational cancer biology and increase the availability of advanced analytic software to the broader research community
• Attract new talent to cancer research
• Validation and dissemination of state-of-the-art tools and technologies
• Demonstrates the inter-relationship between all the recommendations. Challenges require:
 • Openly shared datasets
 • Ability to work across harmonized datasets
 • Participants with appropriate skillsets and expertise