Clinical Proteomic Tumor Analysis Consortium

RFA renewal

Henry Rodriguez
June 24, 2015
Outline

- **Part 1: What we’ve learned**
 - What was CPTAC funded to do?
 - What has CPTAC accomplished in 3.5 years?

- **Part 2: What might be next**
 - Proposed concept (overarching goals)
 - Structure, mechanisms and budget
Part 1: CPTAC program current scope

What was CPTAC funded to do?

- **Goal**: Elucidate the proteogenomic complexity of tumors by identifying proteins that derive from alterations in cancer genomes [TCGA tumors: colorectal cancer (CRC), ovarian cancer (OVC), breast cancer (BRC)]

- **Underlying question**: Would additional biology be elucidated from deep proteomic analysis [CPTAC1] on genomically characterized tumors [TCGA]?

Achieved through…

- Proteome Characterization Centers - consortium of five labs that coordinate standardized research activities
- Sample size (CRC - 95; OVC - 174; BRC - 105)
- Community resources (data, assays, reagents)
Challenges overcome in Year 1

- **Retrospective biospecimens** (samples of convenience)
 - **Scientific implication**: effects of pre-analytical variables associated with TCGA tumors on protein measurement
 - Cold ischemia (up to 60 min)
 - **Good news**: no significant change in protein levels; change in phosphorylation levels, but biologically coherent
 - **Programmatic impact**:
 - Proteomic analysis of **TCGA samples not until Year 2**
 - **Good news**: ischemic proteomic database; prospective collection (tissue); SOPs/Best Practices to be adopted by College of American Pathologists
Colorectal Cancer: global protein abundance (proteome subtypes identified)

Transcriptome Subtypes
- MSI/CIMP
- Invasive
- CIN

Proteome Subtypes
- Subtype C displayed protein network features characteristic of EMT, associated with rapid metastasis and overall poor survival
- MSI/CIMP transcriptome subtype split into two proteome subtypes

Nature. 2014 Jul 20. doi: 10.1038/nature13438
Colorectal Cancer: global protein abundance (proteome subtypes identified)

Next steps (e.g.):

• **Q1. Can we rediscover the proteome subtypes?**
 – Global analysis on independent collection (CPTAC prospective samples: 100 treatment-naïve tumors and normal)

• **Q2. Can targeted proteomic assay panels identify interesting proteome features?**
 – *Proteome Subtype Panel*: 80 proteins representing the five CRC subtypes (CPTAC prospective)

• **Q3. Can targeted proteomic assay panels identify clinically relevant features?**
 – *Proteome Subtype Panel*: evaluate ability to discriminate recurrent from non-recurrent tumors (GI SPORE: 64 treatment-naïve tumors)
Ovarian Cancer: global protein abundance (proteome subtypes identified)

- 174 ovarian HGSC tumors
 - Selection criteria:
 - Overall Survival (OS)
 - Homologous Recombination Deficiency status (HRD)

- 5 proteomic subtypes
 (4 transcriptomic subtypes)
 - Immunoreactive mRNA subtype intermixed at protein level
 - New ‘Innate’ and ‘Stromal’ subtypes emerged
Ovarian Cancer: Deep proteomic analysis yields pathway activation correlated with overall survival

- NCI Pathway Interaction Database (214 signaling pathways)
 - Significantly upregulated pathways with short OS
 - Protein data ($p<0.05$)
 - Phosphorylation data ($p<0.0001$)
 - mRNA data ($p<0.05$)

- Combining deep proteomic, phosphoproteomic and transcriptomic analysis better elucidated the proteogenomic complexity of pathway activation not obtainable at the subtype level.

PDGFR pathway upregulation in TCGA tumors with short OS

$m = mRNA$

$P = protein abundance$

$\uparrow = upregulated$

$\uparrow\uparrow = significantly upregulated$

$\downarrow = downregulated$

$\downarrow\downarrow = significantly downregulated$

$\leftrightarrow = no difference$

$\leftrightarrow\leftrightarrow = not observed$
Next steps (e.g.):

• Q1. Can we rediscover the proteome subtypes?
 – Deep analysis on independent collection (CPTAC prospective samples: 100 treatment-naïve tumors and normal)

• Q2. Can we rediscover the short OS up-regulated pathways?
 – Deep analysis on independent collection (CPTAC prospective)

• Q3. Can targeted proteomic assay panels identify interesting proteome features?
 – e.g. Growth Factor Panel: >30 proteins (non-modified and phospho) up-regulated in PDGFR & VEGFR associated with short OS (CPTAC prospective)
What have we learned
(observations from External Scientific Committee)

External Scientific Committee (ESC):
- Academia
- FDA
- NIH
- Industry

Scientific & Programmatic webinar updates

- CPTAC structure successful and innovative at addressing proteomics cancer research (*consortium of checks and balances*)
- Accelerated adoption of standardized proteomic approaches by research community; critical step in marrying two crucial disciplines
- Some PCCs better than others with innovative data analysis
- Retrospective samples should be avoided, if possible
What have we learned
(observations from Independent Program Evaluation)

- Commissioned by the Office of Program Evaluation and Performance (NIH Office of the Director)
- Are CPTAC outputs (resources) utilized by scientific community?
 - Publication citations: too early to give a well-informed answer
 - partly due to data embargo dates: CRC (pub Sept 2014); BRC (May 2015); OVC (Sept 2015)

- **Other metrics**…

 - **CPTAC Data Portal**
 - Launched 2012
 - 6.2 TB raw files (89 TB equivalent downloaded)
 - proteomics.cancer.gov

 - **CPTAC Assay Portal**
 - Launched 2014
 - 554 fit-for-purpose targeted assays (4,800 users/month)
 - assays.cancer.gov

 - **NCI Antibody Portal**
 - Launched 4Q/2008
 - 314 mAbs available (2,171 units distributed)
 - antibodies.cancer.gov
Part 2: What’s next for CPTAC

• *Process*: Extensive input from External Scientific Committee members, Think Tank participants, and ongoing discussions with NCI Divisions, Centers and Offices program staff

• *Consensus recommendations*: Leverage investments in cancer genomics, by building on current achievements in cancer proteomics

 – (a) Supports an understanding of tumor proteogenomic complexity

 – (b) Addresses clinical/biological questions of drug response/toxicity prediction and resistance

 – (c) Accelerates proteomics science through community resources
Two Overarching Goals Addressing Specific Questions of Cancer

• **Goal 1**: Improve our understanding of the proteogenomic complexity of tumors
 – Q. What’s the association between genome and proteome?
 – Q. How do signaling pathway components crosstalk (DNA, RNA, and protein/PTMs)?
 – Q. What’s the impact of genetic alterations on the proteome?

A. **Proteome Characterization Centers (PCCs)**: extend CPTAC’s approach to additional cancer types where questions remain on their proteogenomic complexity

 • 5-6 cancer types; 100+ cases each (treatment-naïve CPTAC prospective collection); *(selection by extramural community - ESC members, CPTAC PIs, TCGA PIs, Think Tank participants)*

 • Patient-Derived Models Repository program *(coordination with DCTD)*
 • Human Cancer Models Initiative *(coordination with CCG, DCTD, and DCB)*
Two Overarching Goals Addressing Specific Questions of Cancer

• **Goal 2:** Improve our understanding of tumor resistance to therapy, and predicting treatment response (role of non-genetic factors)
 - Q. Why do some individuals not respond or relapse to therapies, when genomics indicated otherwise?
 - Q. What are the underlying mechanisms of resistance to therapies?

B. **Proteogenomic Translational Research Centers (PTRCs):**
CPTAC’s approach to research models and clinical trial samples
 - Applications to include well-conceived clinical/biological questions, access to clinical trial samples, and a proteogenomics research approach (*coordination with NCI’s DCTD - CTEP and CDP*)

C. **Proteogenomic Data Analysis Centers (PGDACs)**
 - Work hand-in-hand with PCCs/PTRCs to develop innovative tools that process and integrate data across the entire proteome Data*, assays and resources (goals 1 & 2) - community resources. (*coordination with CCG and CBIIT*)
Structure and Budget

- Current total FY2015 budget is $13M/yr (U24 PCCs)

- Proposed path forward and recommended budget is $13M/yr
 - Reduce and optimize **PCCs** by focusing on data generation. Budget is $4.0M/yr (U24)
 - Proteogenomic translation to be performed by **PTRCs**. Budget is $4.5M/yr (U01)
 - Data integration/analysis to be performed by specialized **PGDACs**. Budget is $4.5M/yr (U01)
Key Contributors

DCTD, Cancer Diagnosis Program
• Barbara Conley
• James Tricoli
• Tracy Lively
• Tawyna McKee
• Brian Sorg
• Irina Lubensky
• Magdalena Thurin
• Kim Jessup
• Helen Moore

DCTD, Cancer Therapy Evaluation Program
• Jeff Abrams
• Shakun Malik
• James Zwiebel
• Margaret Mooney
• Percy Ivy
• Jeffrey Moscow
• Ming Song
• Jo Anne Zujewski
• Elise Kohn

DCTD, Translational Research Program
• Toby Hecht
• Peter Ujhazy
• Andrew Hruszkewycz
• Tamara Walton
• Igor Kuzmin
• Steve Nothwehr
• Julia Arnold
• Leah Hubbard
• Rajeev Agarwal

DCTD, Biometric Research Branch
• Lisa McShane

OD, Center for Cancer Genomics
• Lou Staudt
• Jean C. ZenKlusen