

Discussions for a

#### National Molecular Microscopy Laboratory

Sriram Subramaniam, Ph.D.

Laboratory of Cell Biology Center for Cancer Research National Cancer Institute

September 2014





#### Outline of presentation

1





#### Imaging gaps in biology and medicine



Subramaniam, Curr. Opin. Microbiol. (2005)







#### 2005-2014: A 10-year plan in molecular microscopy









# Focused ion beam Scanning Electron Microscopy for rapid 3D imaging of cells and tissue









# Imaging receptor arrays and signaling complexes in intact cells









#### Cryo-electron tomography of HIV









#### From spikes to structure









#### Structure determination without crystallography: A biochemist's dream



Purified protein complex



Vision for a structure determination machine

S. Subramaniam, U.S. Patent No. 6,987,266 B2 (issued Jan 2006)





#### Recent progress in cryo-EM field



#### The emergence of atomic resolution cryo-EM

#### Henderson, Quart. Rev. Biophys. (1995)

The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules

**RICHARD HENDERSON** MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK

I. SUMMARY 171

- 2. INTRODUCTION 172
- 3. PHASE CONTRAST VERSUS OTHER MODES OF MICROSCOPY 173
- 4. RELATIVE INFORMATION CONTENT OF PHASE CONTRAST COMPARED WITH HOLOGRAPHY AND DIFFRACTION 174
- 5. NEUTRONS 175
- 6. THE FEASIBILITY OF NEUTRON MICROSCOPY 176
- 7. ELECTRONS VERSUS X-RAYS 176
- 8. ELECTRON MICROSCOPY 180
- 9. WAVELENGTH AND ENERGY DEPENDENCE FOR ELECTRONS AND X-RAYS 183
- 10. CONCLUSION 185
- 11. ACKNOWLEDGEMENTS 186
- 12. REFERENCES 187
- 13. APPENDIX: FORMULAE FOR TABLE 2 189

**2014:** Structure of a dynamic metabolic enzyme implicated in cancer (3.0 Å)



**1990:** First atomic resolution model from electron crystallography of 2D protein crystals (3.5 Å)

**1995:** Articulation of prospects of obtaining atomic resolution protein structures without crystals

**2008:** First near-atomic resolution icosahedral viral structures (3.9 Å)

**2013:** First near-atomic resolution membrane protein structure (3.4 Å)







#### Glutamate receptor gating cycle





Meyerson et al Nature (2014)







#### Glutamate receptor gating cycle



Precise knowledge of protein movements will enable design of drugs that trap distinct functional states





# Comparison between cryo-EM and X-ray maps of $\beta$ -galactosidase





#### Cryo-EM structure of $\beta$ -galactosidase at 3.2 Å resolution





## Fitted with X-ray coordinates

Fitted with cryo-EM coordinates

Cryo-EM can provide atomic resolution structures of fulllength proteins under native conditions









Antibody neutralization









Antibody neutralization



3D structure of trimeric Env









Antibody neutralization



3D structure of trimeric Env



Cell-cell transmission









Antibody neutralization



3D structure of trimeric Env



Cell-cell transmission

A complete understanding of the problem requires integration of information across cellular and molecular scales



Pathway to the nucleus





#### Focused ion beam Scanning Electron Microscopy for rapid 3D imaging of cells and tissue



Iteration of slicing and imaging







#### Focused ion beam Scanning Electron Microscopy for rapid 3D imaging of cells and tissue



Iteration of slicing and imaging









#### Focused ion beam Scanning Electron Microscopy for rapid 3D imaging of cells and tissue



Iteration of slicing and imaging



Heymann et al (2006)







#### A journey into T-cell synapses









#### A journey into T-cell synapses









#### Intimate contact at the cell-cell interface









#### Synapses between primary T-cells



Do et al (2014)







#### HIV transfer to fetal astrocytes







### fetal astrocyte

#### HIV-infected T-cell



#### Correlative live confocal and ion-abrasion SEM imaging: A cell biologist's dream



3D image of entire T-cell







#### Correlative live confocal and ion-abrasion SEM imaging: A cell biologist's dream



Narayan et al J. Struct. Biol. (2014)







### The dynamic HIV spike









# Molecular architecture of trimeric HIV envelope glycoproteins



Subtomogram averages at  $\sim 20$  Å resolution







#### Catching HIV in the act with electron tomography



closed

open

Liu et al, *Nature* (2008) White et al *PLoS Path*. (2010) Tran et al *PLos Path*. (2012) Meyerson et al *PNAS* (2013)





## Structures of soluble HIV-1 Env immunogens at

~ 6Å - 9Å resolution







#### Why FNL?

- c-CRADA mechanism for facile collaborations with industrial and academic collaborators
- Strong infrastructure can be established at FNL for collaborations requiring support for pre-microscopy (biochemistry) and post-microscopy (computing) applications
- CCR/NCI cryo-EM program already has footprint at ATRF
- Proximity to many leading institutions along East Coast with strong structural biology programs



#### NATIONAL CANCER INSTITUTE

#### Scope

- Similarities and differences with DOE national laboratories that support high resolution electron microscopy
- National laboratory versus local academic user facilities
- Private sector and NIH-wide participation
- Synergy between components that provide user access to existing technologies versus those that develop breakthrough technologies
- Budget considerations





#### Leadership

- Set clear long-term vision for laboratory
- Important to maintain both technology development and routine user access components of laboratory
- Nucleation of highly motivated multi-disciplinary teams that can identify and tackle difficult challenges
- Effective strategies to stay at forefront of new developments in structural and cell biology
- Opportunity to establish internationally unique center



#### Training

- Mechanisms to host long-term and short-term visits from extramural researchers
- Core team of specialists to provide support in all aspects of structural investigation from biochemistry to computation
- Resident scholar program
- Strong training partnerships with neighboring institutions
- Peer review and competitive award by extramural study section panel

