Frederick National Laboratory for Cancer Research

Ras project overview

Frank McCormick

The Frederick National Laboratory is a federally funded research and development center operated by SAIC-Frederick, Inc., for the National Cancer Institute DEPARTMENT OF HEALTH AND HUMAN SERVICES • National Institutes of Health • National Cancer Institute

RAS mutations in human cancer

Pancreas	95%	KRAS
Colorectal	45%	KRAS
Lung	35%	KRAS
AML	30%	NRAS
Melanoma	15%	NRAS
Bladder Cancer	5%	HRAS

Ras pathway mutations in lung adenocarcinoma

TCGA: Alice Berger, William Lee

No structures of mutant KRAS complexed with any effector or regulator

Frederick

Laboratory

No structure of full length KRAS

Don't know how Ras activates Raf kinase

No structure of full length Raf, free or Ras-bound

Unclear which KRAS cancers depend on KRAS in vivo

Unclear which effector pathways are critical in vivo

Opportunities to harness the immune system for KRAS cancers?

Parameters affecting oncogenic Ras activity

KRAS for structural analysis Frederick National

Laboratory for Cancer Research

All proteins were expressed in *E. coli* as His6-MBP-tev-RAS, and purified by IMAC, TEV digestion, IMAC, SEC with only monomeric protein collected for the final samples

KRAS characterization - Nucleotide

7 Pat Alexander

Frederick

National

Intrinsic GTP hydrolysis activity of K-Ras mutants

Frederick

Laboratory for Cancer Research

National

Structural determination of full length WT KRAS and oncogenic mutants

Frederick National Laboratory for Cancer Research

Crystals observed from in house screening of all 7 proteins (in GDP bound form)

WT KRAS4b hexagonal crystals diffracting to 3-3.5 Å

Bill Gillette

New Recruit!

Frederick National Laboratory for Cancer Research

Dhirendra Simanshu

 Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.

A Phosphate-Binding Pocket within the Platform-PAZ-Connector Helix Cassette of Human Dicer

Yuan Tian,^{1,6} Dhirondra K. Simanshu,^{1,4} Jin-Biao Ma,^{1,2} Jong-Eun Park,^{3,4} Inha Heo,⁴ V. Narry Kim,^{3,4} and Dinshaw J. Patel^{1,4} 'Structural Bology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA "Department of Biochemistry, School of Life Science, Fudan University, Shanghal 200433, China "Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea "School of Biological Sciences, Seoul Institute for Basic Science, Seoul 151-742, Korea "These authons contributed equaly to this work "Correspondence: pateld@mskcc.org http://dc.doi.org/10.1016/j.mclecl.2014.01.003

Molecular Cell Article

Arabidopsis Accelerated Cell Death 11, ACD11, Is a Ceramide-1-Phosphate Transfer Protein and Intermediary Regulator of Phytoceramide Levels

Dhirendra K. Simanshu, ¹4 Xiuhong Zhai,^{2,8} David Munch,⁹ Daniel Hofius,^{1,9} Jonathan E. Markham,⁴ Jacek Bielawski,⁵ Alicja Bielawska,² Lucy Malinina,⁴ Julian G. Molotkovsky,⁷ John W. Mundy,^{1,4} Dinshaw J. Patel,^{1,4} and Rhodenck E. Brown^{2,4}

¹Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA ²Hormel Institute, University of Minnesota, Austin, MN 55912, USA

³Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark

⁴Department of Biochemistry, University of Nebraska, N146 Beadle Center, Lincoln, NE 68588, USA

⁵Department of Biochemistry and Molecular Bology, Lipidomics Shared Resource Mass Spectrometry Lab, Medical University of South Carolina, Charleston, SC 29425, USA

Structural Biology Unit, CIC bioGUNE, Technology Park of Bizkaia, 48160 Derio-Bilbao, Spain

7Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia

HTS assay development

Frederick National Laboratory for Cancer Research

N a

Molecular targeted assays	Phenotypic assays
Gap function	Proliferation
GTP hydrolysis	Cell death
Effector binding	RAS localization
Effector activation	

KRAS:RBD binding is GTP dependent

Frederick National Laboratory for Cancer Research

500 nM Avi-KRAS GTPyS
0 nM Avi-KRAS GTPyS
500 nM Avi-KRAS GDP
0 nM Avi-KRAS GDP

Avi-KRAS/GST-RBD

Maria Abreu-Blanco

Parameters affecting oncogenic Ras activity

Frederick National Laboratory for Cancer Research

Modified BV strain improves prenylation

Initial results are promising

- final protein is single species with good yield (>2 mg/l)
- methylation not complete (50-60%); probably requires additional ICMT
- scale-up and purification optimization in progress

Plans for structural and biophysical analysis of fully processed KRAS

Frederick

Laboratory

for Cancer Research

National

Disrupting KRAS complexes

- Frederick National Laboratory for Cancer Research
- Develop imaging methods to identify KRAS complexes in cells
- Develop screens for disrupting complexes

Novel cell line development in RAS-less MEFs

Frederick National Laboratory

HRAS-/- NRAS-/- KRASlox/lox MEFs

Drosten M, Dhawahir A, Sum EY, Urosevic J, Lechuga CG, Esteban LM, Castellano E, Guerra C, Santos E, **Barbacid M**. EMBO J. 2010

Rescue proliferation with normal RAS isoforms or mutant RAS isoforms

HRAS	NRAS	KRAS4A	KRAS4B
eGFP-WT eGFP-G12V PAmCherry-WT WT G12V	eGFP-WT WT G12V	eGFP-WT WT eGFP-mutant G12V G12D G12C G13D Q61L Q61R	eGFP-WT WT eGFP-mutant G12V G12D G12C G13D Q61L Q61R 17

RAS dependent proliferation screening strategies

Frederick National Laboratory for Cancer Research

Measure proliferation of red vs green cells

- Total Fluorescence
- Use high content imaging to report actual cell counts

Oncogenic KRAS Effector Network

Frederick National Laboratory

Assay Workflow

Frederick National Laboratory for Cancer Research

Mapping the surface of KRAS cancer cells

Frederick National Laboratory for Cancer Research

Objectives and rationale

- Survey the surface of KRAS-driven cells to generate a list of proteins differentially associated with KRAS phenotype
- These KRAS associated cell surface determinants could represent new targets for
 - antibody-mediated attack
 - immune based therapy
 - nanoparticle delivery

Differences between K-Ras 4A and 4B?

Lung Adenocarcinoma: Top Mutant Genes Sample GSEA Enrichment Overall Result of 4b/4a Ratio High Samples

(less 4A)

GS	SIZE	SOURCE	ES	NES	NOM p-val	FDR q-val	FWER p-val	Tag %	Gene %	Signal	FDR (median)	glob.p.val
TP53	86	TP53	31.556	0.07889	0	1	0.001	0.628	0.444	0.702	NA	1
MAP2K1	6	MAP2K1	21.262	0.053155	0.002	1	0.308	0.833	0.181	0.707	NA	1
PIK3CB	7	PIK3CB	19.125	0.047812	0.006	1	0.462	0.857	0.316	0.611	1	1
APC	10	APC	18.841	0.047103	0.007	1	0.469	0.6	0.158	0.537	1	1
PIK3CG	7	PIK3CG	18.83	0.047075	0.009	1	0.47	0.714	0.181	0.61	1	1
BRD4	5	BRD4	18.362	0.045905	0.004	1	0.472	0.8	0.181	0.675	1	1
CACNA1E	32	CACNA1E	18.143	0.045358	0.028	1	0.474	0.438	0.216	0.422	1	1
RXRG	8	RXRG	17.862	0.044655	0.017	1	0.475	0.875	0.404	0.548	1	1
LAMB4	15	LAMB4	17.303	0.043258	0.017	1	0.475	0.8	0.474	0.462	1	1
PLCG2	8	PLCG2	16.809	0.042023	0.025	1	0.475	0.625	0.181	0.537	1	1
NOTCH1	7	NOTCH1	16.764	0.04191	0.02	1	0.475	0.714	0.24	0.566	1	1
AKAP9	18	AKAP9	16.635	0.041588	0.028	1	0.475	0.833	0.55	0.419	1	1
GRIN2A	20	GRIN2A	16.395	0.040987	0.033	1	0.475	0.55	0.287	0.444	1	1
GNAS	6	GNAS	16.114	0.040285	0.022	1	0.475	0.833	0.339	0.571	1	1
CAMTA1	7	CAMTA1	16.056	0.04014	0.02	1	0.475	0.571	0.117	0.526	1	1
HIP1	6	HIP1	14.683	0.036708	0.065	1	0.475	0.667	0.216	0.541	1	1
MMP2	11	MMP2	14.683	0.036708	0.064	1	0.475	1	0.673	0.35	1	1

Nom p-val <0.05</p>

Frederick

Laboratory for Cancer Research

National

<confidential> | 9 October 201

Differences between K-Ras 4A and 4B?

Frederick

Laboratory for Cancer Research

National

GS	SIZE	SOURCE	ES	NES	NOM p-val	FDR q-val	-WER p-va	Tag %	Gene %	Signal	FDR (median)	glob.p.val	ц Ц
RAPGEF2	9	RAPGEF2	-19.092	-0.04773	0.006	0.016242	0.502	0.889	0.421	0.543	0.017168	0	ç
KIAA1549	8	KIAA1549	-18.609	-0.04652	0.009	0.020767	0.517	1	0.515	0.509	0.019048	0	
CACNA1S	6	CACNA1S	-17.925	-0.04481	0.011	0.029191	0.521	1	0.456	0.564	0.028037	0	2
KRAS	46	KRAS	-17.21	-0.04303	0.036	0.040497	0.524	0.587	0.427	0.46	0.038835	0	5
CTNNB1	8	CTNNB1	-16.809	-0.04202	0.023	0.048646	0.525	0.625	0.187	0.533	0.046949	0	Z
NOTCH2	8	NOTCH2	-16.089	-0.04022	0.036	0.067327	0.525	0.875	0.456	0.499	0.065986	0	
LAMB3	6	LAMB3	-15.923	-0.03981	0.035	0.072138	0.525	0.833	0.351	0.561	0.070707	0	1
FLNB	6	FLNB	-15.446	-0.03862	0.038	0.086906	0.525	0.667	0.199	0.554	0.08547	0	
PTCH1	7	PTCH1	-15.406	-0.03852	0.044	0.088862	0.525	0.857	0.427	0.512	0.087168	0	
PRKCA	6	PRKCA	-14.779	-0.03695	0.055	0.11303	0.525	0.833	0.386	0.53	0.11211	0	
TAOK3	5	TAOK3	-14.335	-0.03584	0.061	0.13422	0.525	0.6	0.123	0.542	0.13274	0	
LAMB2	8	LAMB2	-14.234	-0.03559	0.082	0.13821	0.525	0.75	0.38	0.488	0.13636	0	
CACNA1I	6	CACNA1I	-14.111	-0.03528	0.056	0.1462	0.525	0.667	0.24	0.525	0.14545	0	
PDGFA	5	PDGFA	-14.023	-0.03506	0.063	0.14993	0.525	0.8	0.333	0.549	0.14864	0	
WRN	10	WRN	-13.932	-0.03483	0.071	0.15438	0.525	0.9	0.579	0.402	0.15385	0	
SOS1	8	SOS1	-13.846	-0.03462	0.077	0.16096	0.525	0.5	0.14	0.451	0.16087	0	

NCI Ras Program web site...

Frederick National Laboratory

The NCI RAS Program

- The Problem
- ▶ A Collaborative Solution
- ▶ RAS Projects at NCI/FNL
- ▶ RAS Laboratory Groups
- ▶ RAS Program Oversight
- RAS Spokes
- Help Advance the Research
 - RAS Events
 - RAS Central
 - RAS Pathways & Reagents
 - RAS Tools & Resources
- More About the RAS Program

Page Options

- Print This Page
- Email This Document
- Share

Subscribe to the RAS Central RSS Feed

Subscribe to the RAS Central RSS feed to receive notifications when a new article is posted.

Subscribe 🗗

RAS CENTRAL JOIN THE DISCUSSION

Post comments, ask questions, and share information with RAS experts.

A Message from Dr. Frank McCormick

September 22, 2014 by Dr. Frank McCormick

Welcome to the NCI RAS Program on Cancer.gov.

Since I published my first paper on RAS a long while ago, our knowledge of RAS and its partners in illegitimate signaling has grown tremendously, but as you are aware we have yet to convert that knowledge into any drugs that directly target the RAS protein. We have struggled to integrate what we know of how RAS signals with the heterogeneity seemingly inherent in solid tumors and the subtle differences in the behavior of different *RAS* mutants, among many, many aspects of the RAS problem.

0 Comments

Continue Reading >

Are All RAS Proteins Created Equal in O Comments Cancer?

September 22, 2014 by Channing Der

The three human *RAS* genes encode four highly related RAS proteins (82-90% sequence identity), with alternative gene splicing accounting for the expression of the highly related K-RAS4A and K-RAS4B proteins (90% identity). There is an emerging perception that the roles and functions of specific RAS proteins in cancer are distinct and, consequently, distinct anti-RAS strategies will be needed for effective