

SAIC-F Partnering, ATRF, and the operational enablement of life sciences missions

Atsuo Kuki

CTO, SAIC-Frederick September 12, 2012

Frederick National Laboratory for Cancer Research

FNLCR CTO highlights Presentation Outline

- Access and partnering by external Cancer Research community now OPEN:
 - Legal and Contractual Alignment from DHHS
 - Contract Modification for FNLCR now in place ✓

cCRADA
Authorization
August 2012

- Access for discrete fixed-price services: TSAs
- R&D Partnering via cCRADAs: the current pipeline
- ATRF: Populated and operational, now building the Innovation Culture
- The Operational Enablement of Life Sciences Missions: Leading examples of complex multi-lab expts at FNLCR

Access by the external community:

Expand value for national cancer research via TSAs

National Cancer Research and Development Community

- Gov't: Federal Agencies, State Universities...
- Academic: external investigators, consortia, grant recipients
- Entrepreneurial: SBIR/STTR recipients
- Private sector R&D: Pharmaceutical and top-tier Biotech industry

TSA route for getting science done. Oncology & AIDS R&D enabled by FNLCR applied life sciences technology programs:

Pre-Approved TSAs with fixed pricing, expect ~12 by end of September

- Integrated in vivo Services for GEMMs (LASP Directorate, Lionel Feigenbaum)
- Protein Interaction Analysis; Cancer Biomarkers; ... (ATP Directorate, and BioComputing)
- Virologic and Analytical Reagents and Services for HIV, SIV, SHIV (ACVP Directorate, Jeff Lifson)

FNLCR Access by the external community Technical Service Agreements (TSA)

Fixed price TSAs (first dozen) to include:

- Complex antigen(s) mass ID for antibody characterization by immunoprecip'n-MALDI-TOF robotic assay (ATP, Protein Chemistry Lab)
- Antibody Pairing Assay, Epitope Overlap, Integrated SPR protocol (ATP, Protein Chemistry)
- Transgenic Mouse Models by Pronuclear Injection and Cryopreservation of Founder Lines (Integrated in vivo TSAs offered by FNL LASP will expand steadily)
- Estrogen Metabolite Biomarkers in biofluids and tissues, LC-MS-MS (ATP, LPAT Analytical)
- >3 from AIDS and Cancer Virus Program at FNL (next slides)

Initial 2012 TSA Offerings from the ACVP

Plasma SIV/SHIV RNA analysis

Real time qRT-PCR assay, covers all virus isolates in common usage;
 used in pathogenesis, treatment and prevention/vaccine studies

HIV-1 p24^{CA} antigen capture immunoassay kits *

* not intended for analysis of clinical specimens

 Robust time-proven kits specifically engineered to accelerate preclinical research (plates, secondary Ab, detection reagents, standards)

Additional 2012/13 Planned TSA Offerings from the ACVP

SIV/SHIV In Situ Hybridization

 ISH analysis of NHP tissues (LN, gut, other), with virus lineage specific probes, with quantitative image analysis; pathogenesis, treatment and vaccine studies

Single Genome Amplification (SGA) Sequencing

 Limiting dilution PCR sequencing to identify individual viral variants in studies of viral transmission, evolution and drug resistance, immune escape

Integrated 2012/13 Planned TSA Offerings from the ACVP

Laser Capture Microdissection (LCM) SGA Sequencing

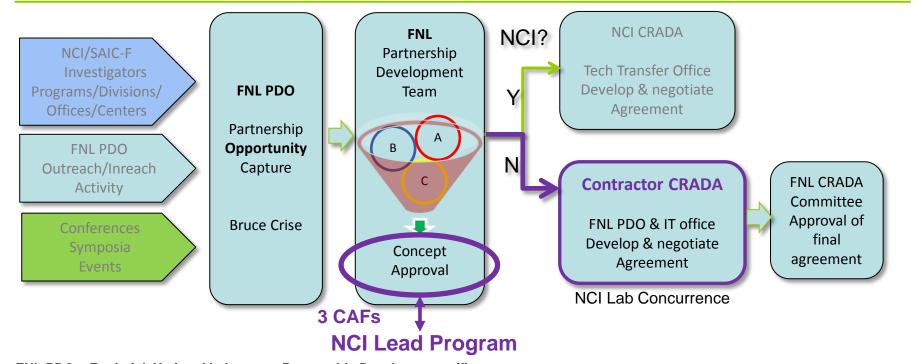
- Tissue Analysis Core, and Viral Evolution Core, integrated service
- LCM to recover selected (virus+) foci from tissue sections, with extraction and Single Genome Amplification sequencing to identify individual distinct viral variants in studies of viral transmission, evolution and drug resistance, immune escape

Core Labs are the key. ACVP example:

Quantitative Molecular Diagnostics Core, M Piatak, PhD Biological Products Core, J Bess, Jr, MS Tissue Analysis Core, J Estes, PhD Viral Evolution Core, B Keele, PhD

Partnering with the external community: cCRADA pipeline: submissions for Concept Approval

Concept Approval Form (CAF)


- sent to NCI Lead Program to verify Mission alignment, and
- to optimize value as the cCRADA plan takes shape

~7

3 CAFs

by October, expect steady-state of >4 post-CAF

3 CAFs submitted within 8 days of cCRADA authorization

FNL PDO = Frederick National Laboratory Partnership Development office, part of the CTO office

CAF = Concept Approval Form, to verify Mission alignment

Frederick National Laboratory for Cancer Research

cCRADA pipeline, being vetted

Breadth of partnership (in preliminary discussion)

SAIC-F

Clinical Directorate

ATP / ElecMicroscopy

ATP / Proteomics

ISP / BioComputing

ATP / NCL

ACVP

exploratory

Partner

Emerging Market Pharma

Industry Consortium

Instrument Maker

Pediatric Comprehensive Cancer Ctr

Pharma / Reformulating Therapeutics

Academic Consortia (NIH funded)

Academic Consortia (Philanthropy funded)

Partnering Opportunities just a start of Evolution into high impact National Lab

now:

- 1. Expanding collaboration from FNL with Extramural, Entrepreneurial, and Industrial partners for Translational Medicine
- 2. Opening of the new Advanced Technology Research Facility (ATRF)
- 3. Opportunities span FNL expertise
 - Molecular, Nanotech, Virologic, Cellular, Tissue, in vivo, Imaging, Bioinformatics, Molecular Pathology
 - Clinical support, Biopharmaceutical development, Cancer biomarkers

... next

4. Strategic impact on long-term National Cancer priorities:

More than just breadth of Operational capability, the emerging strength in FNL is **Integration across that span**. From here, we will derive

Top caliber Enablement of Strategic Missions

ATRF open. Advanced Technology Program (ATP) labs 70% to 90% operational

ATP Move to ATRF June 19th - present

130 people in 8 Laboratories and ATP Office

48 lab rooms, 4 cold rooms

44 offices, 86 cubicles

5 electron microscopes, 13 mass spec, 60 L fermentor ...

Co-localization of teams into the ATRF is enormously significant.

- Re-invigorating passion for scientific discovery and inspiring previously silo'd tech lab members to seek out interdisciplinary approaches
- Nascent spirit of shared purpose and mutual accountability
- Commitment to developing integrated biology capabilities

1st ATP-wide innovation event: Lab Tours in Oct and formation of "Trans-ATP Innovation group"

FNL emerging strength...

Integration across Span of Capabilities

The Operational Enablement of Life Sciences Missions

What are some of the key characteristics for success?

Four leading examples of integrated multi-lab experiments at FNLCR:

- 1. The NCL Nanocharacterization integrated assay cascade
- 2. The ACVP AIDS vaccine/therapy non-human primate integrated study
- 3. GEMM cascade in LASP w/ Imaging, Molecular pathology (e.g. for CAPR)
- 4. ISP integration Hub for national Biospecimen networks (e.g. for caHUB)

FNL emerging strength...

Integration across Span of Capabilities

Operational Enablement of complex multi-lab interdependent cascade expts

1. The Nanocharacterization integrated assay cascade (NCL, McNeil)

Nano-particle EM Cytotox Plasma, Tissue surface chem in vivo Tox in vivo distribution imaging

2. AIDS vaccine non-human primate integrated study (ACVP, Lifson)

FNL emerging strength...

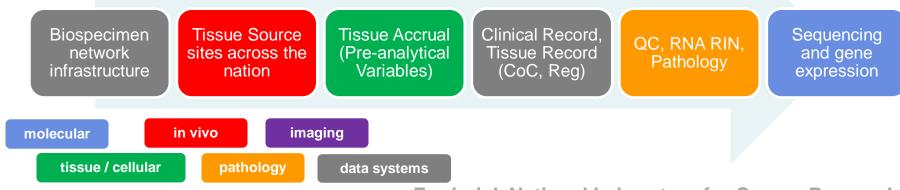
Integration across Span of Capabilities

Operational Enablement of complex multi-lab interdependent cascade expts

3. GEMM operation w/ Imaging, Molecular pathology (LASP)

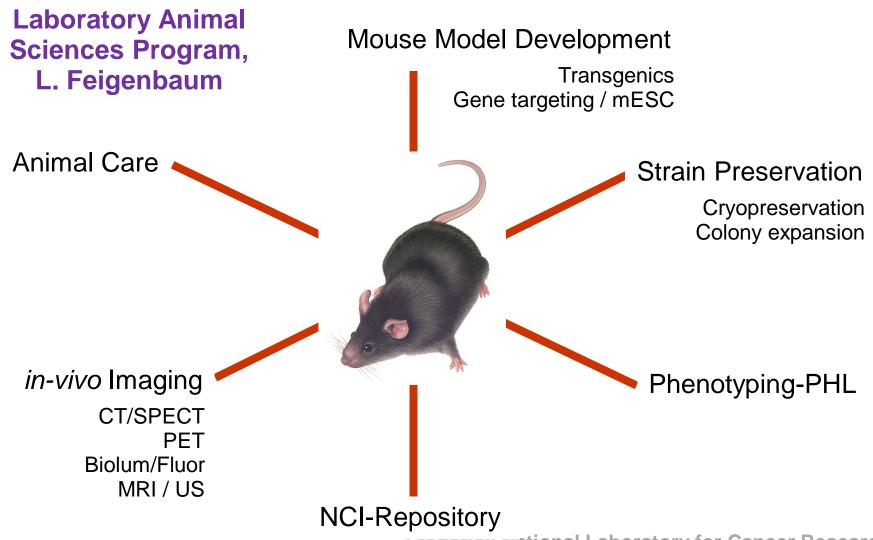
Transgene Design & Prep

Micro-inject into egg pronucleus


GEMM

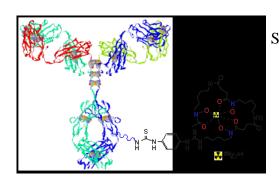
Genotypic characteriz'n founders

Experimental therapy


Imaging & Pathology

integration Hub for national Biospecimen networks (ISP)

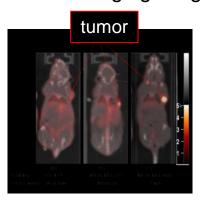
3. LASP CORE Programs


rrederick National Laboratory for Cancer Research

Small Animal Imaging to Inform Dosing

Panitumumab: testing targeting in tumor models

Integration: (DCTD/NCI): Radio-labeling and preclinical imaging of [89Zr] - panitumumab in diagnostically relevant low doses to identify determinants of tumor uptake. Next, proceed to clinical trials to be performed at the Molecular Imaging Program, CCR/NCI.



Schematic structure of radio-labeled panitumumab

Conjugated by

Dr. Bhattacharyya

(ADRD / SAIC-F)

PET anatomical
Imaging performed by
LASP/SAIC-F

Conclusion:

- Dr.'s Hollingshead & Kaur (NCI: BTB/DTP/DCTD)
- Tumor Uptake (PET) correlates directly with Her-1 expression (Western)
- FNL role (broader implications):

L. Feigenbaum

Support for intramural programs validate comprehensive Radio-Label and Preclinical Modeling capability

transferable to other drugs / targets to inform clinical dosing regiments

4. ISP integration Hub for national Biospecimen networks

Quality: Permanent Foundation for Meaningful Biospecimen Collections

N. Roche G. Korzeniewski

Quarter

Genotype Tissue Expression (GTEx) project NCI/OBBR

GTEx Project to collect normal human tissue in an ambitious 15-30 tissues per case

• myocardium, aorta, lung, thyroid, pancreas, peripheral nerve, liver, stomach, brain...

after 5th qtr

4000

2000

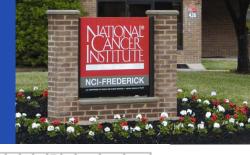
Requirements for Quality in the specimen collection campaign

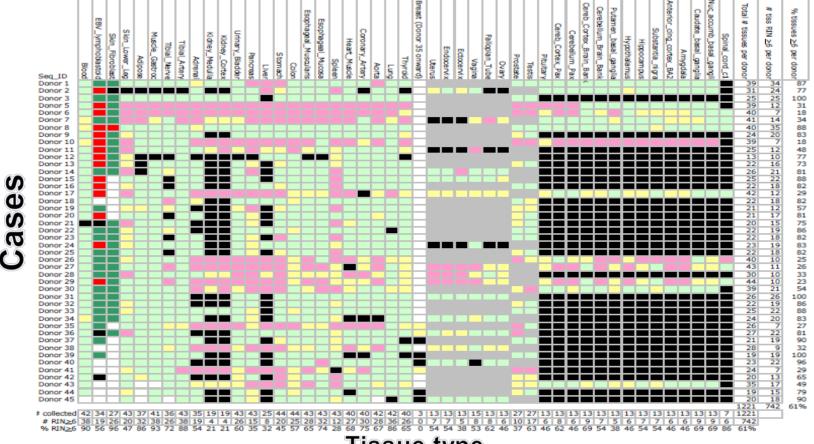
- Pre-analytical Variables
 - Delay to fixation, time in fixative "NCI: Biospecimen Preanalytical Variable"
 - BPV Phase 2: 900 cases of ovary, lung, colon and kidney cancers from four medical centers

Histologic review (Dr. L Sobin, part of SAIC-F Pathology Resource Center)

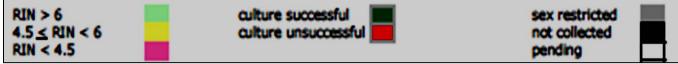
Ethical, Legal and Regulatory team: consent, PII protection and handling of all clinical and research records

Status of Specimen Collection in GTEx


June 2011 SAIC-F engaged a rapid autopsy network


Currently over **10,000 GTEx** specimens have been collected

February: GTEx project will scale to enable collection of over 750 cases, 32,000 specimens, 300 brains


Validated results enabling SOPs as an NCI resource for State of the Art specimen collections

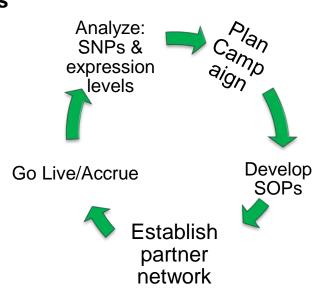
RIN (RNA quality) values by Histologic Type tracked over thousands of samples in GTEx

Tissue type

FNL enabling and managing Biospecimens in the highly variable clinical environment

caHUB support – multi-program experience in planning, designing, QC, operating and scaling biospecimen projects

NIH GTEx, NCI BPV and BMS projects providing


 a rich exchange of lessons learned, best practices and state-of-the-art expertise

The **Pathology Resource Center** under SAIC-F provides

 centralized detailed histologic review of ALL tissues collected; ensuring high quality control

Scalable, flexible management by SAIC-F of the

- Central BioRepository (Ann Arbor),
- Central Data Repository (Frederick)
- Diverse Biospecimen Source Sites

Project Lifecycle continuously applied; Relentless focus on state-of-art QA/QC

FNL emerging strength and future

Integration across Span of Capabilities within and beyond walls of FNLCR

FNL expertise is most evident as the demonstrated capability to deploy multi-scale technology multi-lab resources into integrated complex (and sometimes nationally networked) cascade expts

- 1. The Nanocharacterization integrated assay cascade
- 2. The AIDS vaccine/therapy non-human primate integrated study
- 3. GEMM cascade w/ Imaging, Molecular pathology
- 4. ISP integration Hub for national Biospecimen networks

Some characteristics in the best FNL examples to date:

- Multi-technology integrated protocols,
- Relentless emphasis on QC, controls, durable impact
- Logistical operational focus (more industrial than academic)
- Familiarity with a range of contractual and regulatory complexity
- Building *de facto* standards
- Offering implementations of these to new partners

Summary: FNL is Open

- TSAs: OPEN (grow to dozen, then multiple dozens) Selective. Relevant.
- cCRADA pipeline: OPEN (expect > 4 steady-state in negotiation post-CAF)
- ATRF: OPEN, driving to 100% operational output
- Emphasis from CTO vantage (enabling complex missions):
 - Complex Integrated Functions of high value to National Cancer R&D community

- High quality durable capabilities, clinical and pre-clinical, brought to new partners from the long-term work within FNL directorates, now the newest National Lab
- de facto standards, reference quality

Top caliber Enablement of Strategic Missions within NCI Priorities

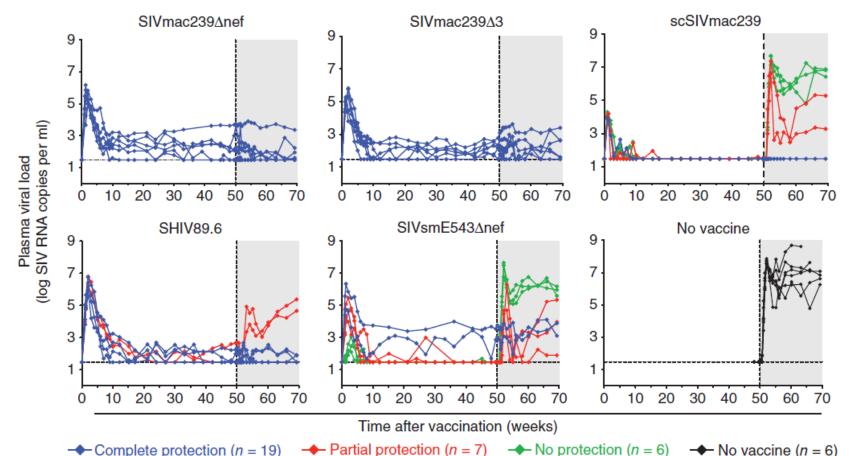
Additional slides

ARTICLES

medicine

Lymph node T cell responses predict the efficacy of live attenuated SIV vaccines

Yoshinori Fukazawa^{1,2,8}, Haesun Park^{1,2,8}, Mark J Cameron³, Francois Lefebvre³, Richard Lum^{1,2}, Noel Coombes^{1,2}, Eisa Mahyari^{1,2}, Shoko Hagen^{1,2}, Jin Young Bae^{1,2}, Marcelo Delos Reyes III^{1,2}, Tonya Swanson^{1,2}, Alfred W Legasse^{1,2}, Andrew Sylwester^{1,2}, Scott G Hansen^{1,2}, Andrew T Smith³, Petra Stafova³, Rebecca Shoemaker⁴, Yuan Li⁴, Kelli Oswald⁴, Michael K Axthelm^{1,2}, Adrian McDermott⁵, Guido Ferrari⁶, David C Montefiori⁶, Paul T Edlefsen⁷, Michael Piatak Jr⁴, Jeffrey D Lifson⁴, Rafick P Sékaly³ & Louis J Picker^{1,2}

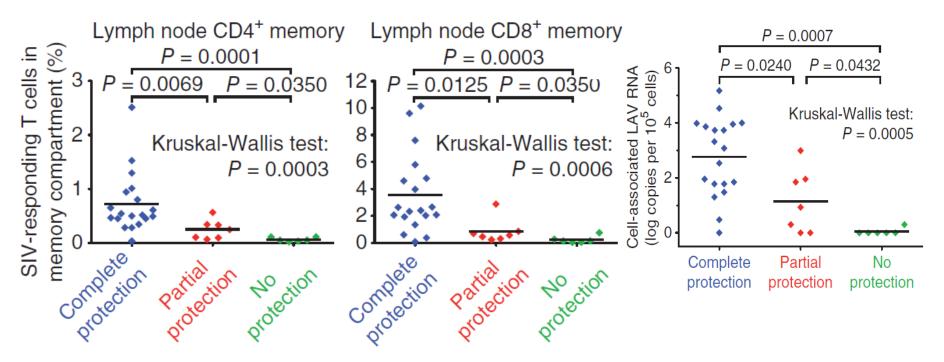

Persistent low level vaccine immunogen expression from "immune privileged" T_{FH} infection by LAV, maintains persistent lymph node T_{EM} responses capable of effective early response to and control of WT challenge virus, similar to postulated mechanism of protection by rRh-CMV vectored SIV vaccines

medicine

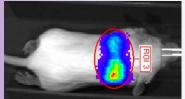
Comparative study of 5 different live attenuated SIVs varying in levels of virus expression, persistence and sequence match with challenge virus generated an immune response/protection matrix to evaluate potential immune correlates

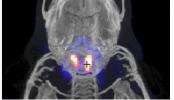
Among cellular and humoral immune responses tested, only LN T cell responses correlated with vaccine protection

Table 1 Kruskal-Wallis analysis of the 11 primary immune response predictors compared to the protection categories

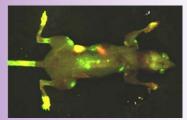

Immune predictors	Unadjusted P	Bonferroni-corrected P
PBMC CD4+ T cell response magnitude	0.0672	0.7392
PBMC CD8 ⁺ T cell response magnitude	0.0195	0.2148
PBMC CD4 ⁺ T cell response breadth	0.0301	0.3313
PBMC CD8 ⁺ T cell response breadth	0.1593	1.0000
Lymph node CD4+ T cell response magnitude	0.0003	0.0036
Lymph node CD8+ T cell response magnitude	0.0006	0.0070
BAL fluid CD4+ T cell response magnitude	0.0450	0.4950
BAL fluid CD8+ T cell response magnitude	0.0221	0.2426
SIVmac239 neutralizing antibodies	0.1458	1.0000
SIV env-specific antibodies; TCLA SIVmac251 neutralization	0.0079	0.0872
SIV env-specific antibodies; ADCC	0.0073	0.0808

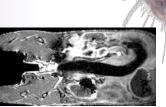
Values in bold are those that reached statistical significance after Bonferroni correction. TCLA, T cell-line adapted; ADCC, antibody-dependent cell-mediated toxicity.


Persistent expression of LAV RNA in LN (in T_{FH} cells) is associated with persistent LN SIV-specific T_{EM} responses; both are correlated with vaccine protection



SAIC-F LASP / Imaging and Histotechnology


Small Animal Imaging Program

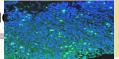


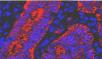
Bioluminescence

CT/SPECT

Fluorescence

MRI


- Phenotypic analysis of GEM or xenograft models
- Development of new targets for early phenotypic detection
 - 3. Testing of potential new therapies


Pathology and Histotechnology Laboratory

Histotechnology

- Tissue processing
- Molecular histology assay development
 - Immunohistochemistry
 - In situ hybridization
 - etc.
 - Image capture/ana
 - Bright field

Veterinary pathology

- Study design
- Protocol develop
 - Data analysis
- Animal imaging va