

Overview of NCI/FNLCR Interactions

Robert H. Wiltrout, Director, SD for Basic Science Lee J. Helman, SD for Clinical Research NFAC

February 4, 2014

History of CCR in Frederick

CCR-Frederick FY13 Spending

Current CCR-Frederick Labs Research Portfolio

Chemistry, Structural Biology, and Drug Development

Mouse Models of Cancer and other Diseases

CENTER FOR CANCER RESEARCH

Inflammation and Immunology

HIV/AIDS & Cancer Virology

Gene Regulation, Cell Signaling, RNA Biology, Cell and Cancer Biology

Benefits to CCR of Having Some Programs at FNLCR

Past Contributions of CCR to FNLCR

 CCR labs provide a strong scientific culture for the FNLCR campus and serve as an intellectual resource for many NCI activities of the FFRDC

- Heavy emphasis on programs to encourage interactions
 - Mouse Cancer Genetics
 - Cancer & Inflammation
 - Molecular Targets
 - HIV Drug Resistance
 - Physical Sciences Chemistry and Structural Biology
- CCR labs have historically assisted with development and β-testing of new technologies by the Advanced Technology Program and Lab Animal Sciences Program that are then made available more broadly across NIH
- CCR contributes to NCI's broader efforts in drug development by close co-location of Pls with components of DCTD's NExT Program
- Development of IL-15 and IL-7 with BDP
- Natural products for drug development

Product Development: Immunotherapy

 IL-15 and IL-7 were two of the top 5 agents select for development at the BDP during the 2007 Immunotherapy Agent Workshop

- BDP developed these agents and made them available to the intramural and extramural community
- Both are being used in several investigational studies for cancer therapy
 - First clinical trials of IL-15 for the treatment of patients with metastatic malignant melanoma and metastatic renal cell cancer
 - First clinical trials of IL-7 in humans

IL-15: Bench to Bedside

Much progress has been made in basic, translational, and preclinical research on IL-15, a cytokine of enormous promise in treating cancer, HIV, and autoimmune disease. This includes:

- Co-discovery of IL-15, discovery of two of the three subunits of the IL-15 receptor, and demonstration that IL-2 and IL-15 share receptor components
- Development of mice transgenic for IL-15 and subsequent demonstration of distinct and contrasting functions of IL-2 and IL-15
- Increased understanding of the biological effects and mechanisms of action of IL-15
- IL-15 is a broad stimulant for both innate and adaptive immune lymphocytes
- Demonstration that IL-15 enhances effectiveness of therapeutic cancer vaccines and increases survival in some murine models of cancer

Biological Properties of IL-7 Are Attractive for Clinical Translation

IL-7 is a master regulator of T cell homeostasis and potent immunorestorative

- IL-7 therapy enhances immune reconstitution in mice
- IL-7 therapy enhances vaccine responses in mice
- Circulating IL-7 levels rise in response to lymphopenia (humans and mice)

- rhIL-7 under study in > 15 trials in US, Europe and Asia. Studies ongoing or planned include:
 - Immunodeficiency following chemotherapy for cancer
 - •Immunodeficiency following allogeneic stem cell transplantation
 - •Idiopathic CD4 lymphopenia
 - •Some congenital immunodeficiencies (planned)
 - •Glioblastoma (*planned*)
 - •Vaccine adjuvant in aged individuals
 - •Tumor vaccine adjuvant
 - •Support for adoptive immunotherapy (planned)

Approved Anticancer Drugs as of 2012

Natural products & derivatives

CENTER FOR CANCER RESEARCH

- Natural product pharmacophores
- Synthetics

Biologics & vaccines

- Co-located Cores at ATRF
- Computational Support from ABCC to address common needs
- Center for Advanced Preclinical Research
- Collaboration on FNL project areas or needed technologies, if requested

ATRF Co-Located Cores

Pre-Pivot

ATP Shared Services: CCR Usage

CCR Effort (FTEs) CCR Cost

771 K

468 K

260 K

48 K

4

8

9

Post-Pivot

CENTER FOR CANCER RESEARCH

ATP Shared Services: CCR Usage

Microrrays (LMT) ~771 K?

CCR Dedicated Cores

	<u>FTEs</u>	<u>Cost</u>
Mass Spec	4	680 K
Protein Chemistry	0.5	75 K
Protein Production	4	610 K
Light Microscopy	4.25	612 K
*Electron Microscop	y 2	300 K
18	5 FTEs	2.3 M + Equipment
CCR Sequencing Core		

*Located in part at NCI-Frederick

Light Microscopy (OMAL) 7 450 K Electron Microscpy (EML) 4 202 K **34 FIES 2.2 M CCR** + Support from NCI-OD for campus-wide technology infrastructure and development (4.4M)

CCR Dedicated Cores

CCR Sequencing Core

Microarrays (LMT)

Mass Spec (LPAT)

Protein Chemistry (PCL) 2

Protein Expr/Purif (PEL)

- Access to additional bandwidth in urgent situations
- Critical mass of highly specialized expertise

Lessons Learned and Best Practices for FNL Core Support to CCR and DCEG

• **<u>Strengths</u>**: Leidos has done well when responding to specific, directed tasks or dedicated labs and where efforts are guided by oversight groups

- NCI drives the science and technology development, while taking maximum advantage of Leidos expertise
- These partnerships often are lead by very competent, missiondedicated Leidos staff, resulting in sustained results of high value
- <u>Challenges</u>: Undedicated core labs have tended to suffer mission drift and/or reduced efficiency/customer satisfaction
 - Management sometimes does not understand the scientific changes at the cutting edge and takes directions not needed or wanted
 - Core leaders redirect time and effort in support of areas of their interest which may not coincide with NCI's needs

Computational Resources

 Translating genomics and proteomics insights into therapeutics requires computational resources to support structural biology, imaging, chemistry, and drug development activities

- ABCC's Simulation, Analysis, and Modeling (SAM) group currently provides computational support in several areas (4 FTEs)
- Expanded capabilities in SAM would be highly relevant to CCR's portfolio and potentially highly relevant to the Ras project
- ABCC also provides services to CCR in related areas, such as informatics

Center for Advanced Preclinical Research

 Partnering with the Lustgarten Foundation on preclinical development of therapeutics for pancreatic cancers (95% of which are driven by RAS)

 Numerous Technical Service Agreements (TSAs) with outside entities on preclinical development of therapeutics using the pancreatic and lung models

Progress on Ras Collaborations:

- Initial meets were held with CCR staff working on Ras biology and the FNL Ras project team
- CCR is hosting a Ras forum during the SS/SC retreat in April 2014, with participation from Drs McCormick and Heimbrook

CENTER FOR CANCER RESEARCH

- Laboratory of Cancer Biology and Genetics/FNL collaboration on siRNA interrogation
 of downstream Ras signaling pathways
- Cancer and Inflammation Program/FNL collaboration on Ras inhibitors
- CCR structural biology expertise has been offered

Arising issues:

- Lack of clarity about whether communication and collaborations between ATRF Ras and IRP PIs is desirable on areas of common interests
- Lack of clarity about ability to share reagents or technologies may lead to some redundancy

Areas of Strategic Emphasis

Mouse models-partnership with Leidos

- Screening for natural products and drug development-partnership with DCTD/Leidos
- Structural biology and chemistry CCR emphasis

 Improve communications and interactions on Rasrelated projects and reagents?

