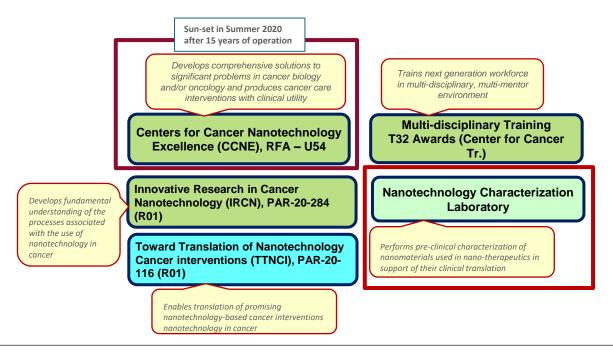
Nanotechnology Characterization Laboratory

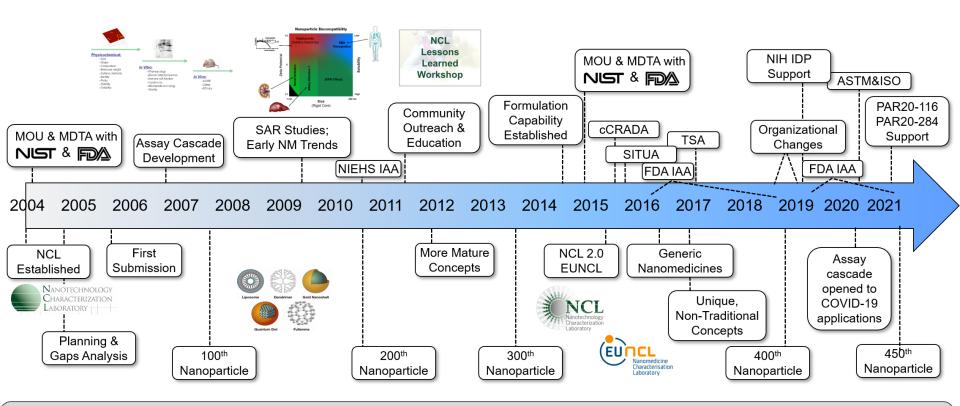
Supporting Translation of Cancer Nanomedicines

Cancer Nanotechnology: The Opportunity

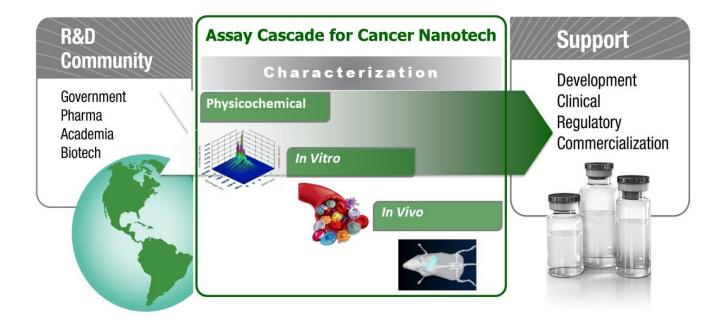
- Combine power of innovation in nano-materials and cancer biology to develop new solutions in cancer
- Detect Disease Before Health Has Deteriorated
 - Sensors
 - Imaging
- Deliver Therapeutics
 - Local delivery
 - Improved efficacy
 - Post-therapy monitoring

Develop Research Tools to Enhance Understanding of the Disease





NCI Alliance for Nanotechnology in Cancer (since 2005)


- Very strong scientific output demonstrated by large number of high-profile publications;
- Translating technologies through formation of start-up companies (over 130 to-date);
- · Over 20 clinical trials have been pursued by start-ups.

NCL Timeline

- Over 15 years of experience in nanoparticle characterization
- Standardized assay cascade, method development, education & knowledge sharing
 - Beyond assay cascade cCRADA, TSA, IAA agreements

Nanotechnology Characterization Lab (NCL)

- NCL was established in 2004 as an interagency collaboration among NCI, FDA, and NIST;
- Lab's primary mission is to advance the science and enable translation of promising nanomedicines with a support of a standardized "Assay Cascade";
- 'Assay Cascade' characterization is **FREE** of charge to submitting investigator.

NCL's Assay Cascade

FREE Service for cancer nanotechnology concepts, by application

Physicochemical Characterization

Size/Size Distribution

- · Dynamic Light Scattering (DLS)
- Electron Microscopy (TEM, SEM, cryo)
- Atomic Force Microscopy (AFM)
- · Field Flow Fractionation (FFF), SEC-MALS

Composition

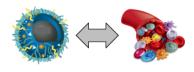
- TEM with EDS
- Inductively coupled plasma-mass spec. (ICP-MS)
- Spectroscopy (NMR, CD, Fluorescence, IR, UV-vis)

Purity

section of IND

CMC

Applicable to


- Chromatography
- Capillary Electrophoresis

Surface Chemistry

- Biacore
- Zeta Potential

Stability

 Stability can be measured with any number of instruments with respect to time, temperature, pH, etc.

In Vitro Characterization

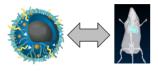
Sterility

immunotherapies

Applicable to vaccines,

- · Bacterial/Viral/Mycoplasma
- Endotoxin

<u>Hematology</u>


- Hemolysis
- Platelet Aggregation
- Coagulation
- Complement Activation
- Plasma Protein Binding

Immune Cell Function

- Cytokine Induction
- Chemotaxis
- Phagocytosis
- · Leukocyte Proliferation
- · Leukocyte Procoagulant Activity

Toxicity

- Cytotoxicity
- Autophagy

In Vivo Characterization

Pharmacology

- Clinical Tx cycle
- NP Quantitation methods
- · PK Parameters

<u>Immunotoxicity</u>

studies

animal (

Somprehensive

- · Local lymph node proliferation assay
- · T-cell dependent antibody response
- Adjuvanticity
- · Rabbit pyrogen test
- Immunogenicity
- · Inflammatory response
- Autoimmunity

Single and Repeated Dose Toxicity

- Blood ChemistryHematology
- Not GLP
- Histopathology (42 tissues)
- Gross Pathology

Inter-disciplinary approach to link physicochemical attributes to biological outcomes

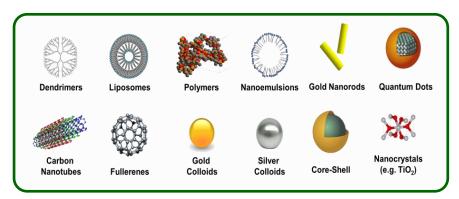
72 protocols available online: https://ncl.cancer.gov/resources/assay-cascade-protocols

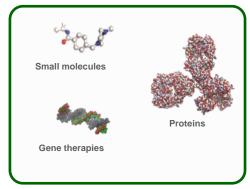
NCL's Assay Cascade Application Process

Two-phase application process

Phase 1: Brief (3-4 page) White Paper

- Abstract, Background, Strategy/Concept, Data on Synthesis, Characterization, In Vitro & In Vivo Testing, Novelty, Clinical Impact & Scale Up.
- Applications are accepted and reviewed quarterly.
- Decisions are remitted within 45 days of the application deadline.

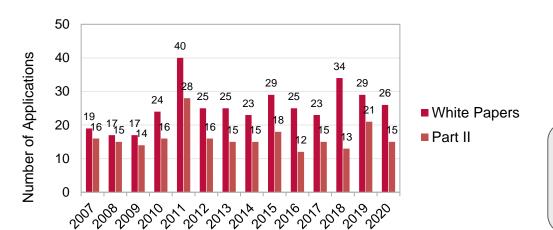

Phase 2: Oral or Written Proposal


- Expansion of data presented in White Paper; addressing reviewer questions.
- Inputs due within 3 months of receiving invitation letter.
- Decisions are remitted within 2 weeks.

National Cancer Institute Nanotechnology Characterization Laboratory			
White Paper Application			
	DATE RECEIVED		
TITLE OF PROJECT (Do not exceed 200 characters, including spaces and punctuation.)			
2a. Is this White Paper related to a previous NCL application? If so, when was the previous application submitted?	2b. Is this White Paper related to a previous NCI application? If so, under which program and when was the previous application submitted?		
3. PRINCIPAL INVESTIGATOR/PROGRAM DIRECTOR			
3a. NAME	3b. DEGREE(S)		

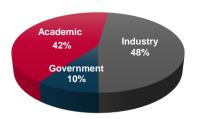
NCL by the Numbers

>450 Different nanomaterials characterized with a wide range of nanotechnologies and APIs

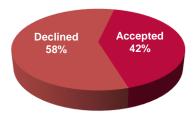


- >200 Peer-reviewed publications covering nanoparticle characterization, immunotoxicity and safety
- >250 Collaborations with academia, industry, and government labs
- >70 Protocols standardized for various nanoparticles
- 17 NCL collaborators reached clinical trials

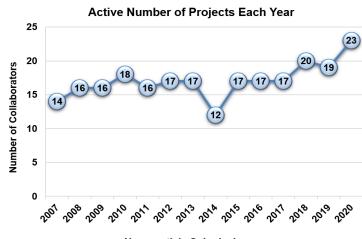
Cumulative experience of providing NCL Assay Cascade for 16 years has made NCL a unique resource

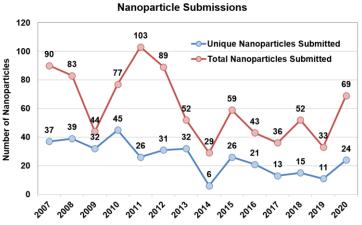


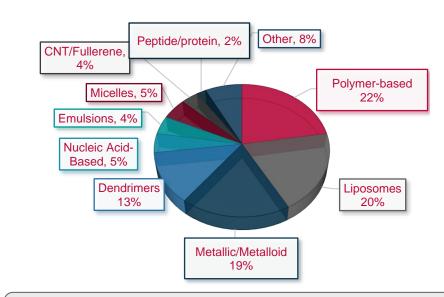
Assay Cascade: Applications and Acceptance Rates



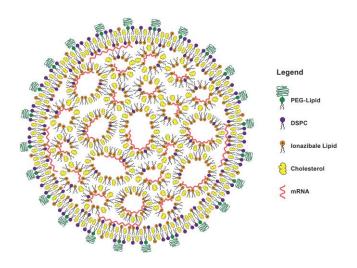
- On average ~20 applications/cycle;
- Majority of white paper applications come from industrial and academic researchers;
- Overall acceptance rate ~40%.

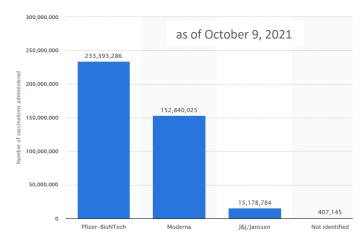

Applicants




Overall Acceptance Rate

Assay Cascade: Nanoparticles Metrics

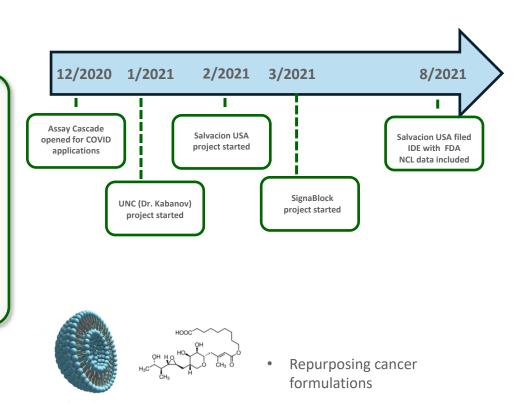



Polymer-based nanomaterials, liposomes and metal-based nanoparticles dominate the NCL nanoparticle portfolio.

- Average number of projects per year 15-16
- Average number of total nanoparticles per year 61
- Average number of unique nanoparticles per year 26

Lipid Nanoparticles for mRNA-based COVID-19 Vaccines

Structure of Pfizer/BionTech nanoparticle; drawing by NCL



https://www.statista.com/statistics/1198516/covid-19-vaccinations-administered-us-by-company

Assay Cascade: Response to COVID-19

Assay Cascade opened to COVID-19 Concepts

- December 2020, first application cycle
 - SignaBlok
 - Salvacion USA, LLC IDE filed
 - Gerrit Borchard, University of Geneva
 - Alexander Kabanov, University of Norther Carolina-Chapel Hill

NCL321 (Dr. Barenholz)

NCL Advances Science and Promotes Clinical Translation

NCL74

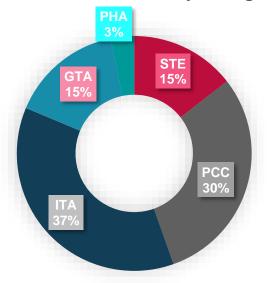
NCL170

we make lives better ●UT HEALTH Science Center NCL303

EU authorization - 2019

17 Applicants in clinical trials with novel nanomedicine therapies

Education and Knowledge Sharing: Method Dissemination


72 total protocols on the NCL website

https://ncl.cancer.gov/resources/assay-cascade-protocols

2243 protocols downloaded last year

All protocols have unique DOI

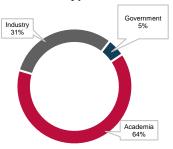
Protocol Downloads by Category

- STE = sterility;
- PCC = physicochemical characterization;
- ITA = immunotoxicity assay;
- GTA = general toxicity assay;
- PHA = drug release assay

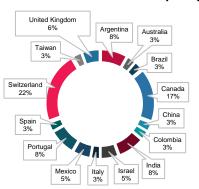
Education and Knowledge Sharing: NCL/NCI-Sponsored Workshops & Training

Immunology Workshop Series

- December 2019 & May 2020
- ~175 participants
- ~20% from outside the US
- ~60% were PI
- Stimulated T32 and RO1 grant submission


NCL Bootcamp

NCI had approved in-person training opportunities for graduate students and post-doctoral fellows to gain hands-on experience with NCL assays;


Originally planned for Spring 2021; delayed due to pandemic.

Breakdown of Institution Types

Non-US Countries Participating

Technology-Development Seminars

- NCI & FNL Technology Showcase
- Drug delivery seminar on lymphatic targeting
- Platform technology for monitoring progression and treatment of cancer

Drew interest from many participants.

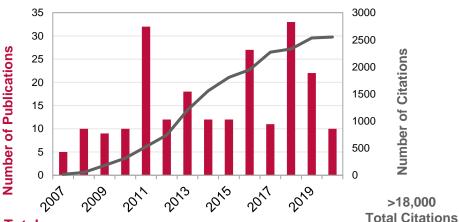
This is in addition to attending and presenting at National and International research conferences

Education and Knowledge Sharing: Client Reports and Publications

Client Reports 121 Assay Cascade reports written to date

Avg. 7-8/year

Report details:


- Every experiment conducted on every batch of material submitted
- Methods, results, analysis & discussion
- Connecting physicochemical and biological data

- IND filings, other regulatory questions
- · Publications, presentation
- Venture capital
- Verification of internal results
- Transfer to CRO

Publications

Though not a priority for NCL's mission, NCL publishes several manuscripts focused on:

- Method development efforts;
- Areas of focus per SOC recommendation, e.g., nucleic acid nanoparticles
- Review articles to attract new clientele, e.g., imaging constructs, pharmacokinetic interpretation.

(h-index=52)

224 Total Publications

Standards Development at NCL

- Standards development with ASTM and ISO
 - Three NCL protocols are ASTM standards
 - Multiple NCL protocols are ISO PASs
- NCL supported the production of NIST's colloidal gold RM
 - Gold selected for calibration and biocompatibility
 - 10 nm, 30 nm, and 60 nm diameters
- NCL participates in inter-laboratory studies (ILS)

Standards Development

1. **WK76862** Guide for the Identification of Nanoparticles Ability to Induce Infusion Reactions

- Member of ISO's Technical Committee 229, Nanotechnologies
- Liposomes Terminology working group (JWG 1)

- 1. **WK76861** Method for the In vivo analysis of nanoparticle-mediated physiological changes accompanying hypersensitivity reactions
- 2. WK76860 Method for the Preparation and Analysis of Culture Supernatants for the Presence of Cytokine Biomarkers by Nanoparticles in Human Whole Blood Cultures
- WK76878 Method for the analysis of nanoparticle effects on human platelets in vitro
- **4. WK76821** Practice for the Synthesis and Assembly of Nucleic Acid Nanoparticles
- 5. WK76822 Method for the Preparation and Analysis of Culture Supernatants for the Presence of Cytokine Biomarkers by Nucleic Acid Nanoparticles in Human Peripheral Blood Mononuclear Cells
- **6. WK76823** Guide for the Evaluation of Immunostimulatory Properties of Nucleic Acid Nanoparticles (NANPs)
- 7. Method "In vitro Analysis of Nanoparticle Hemolytic Properties" (a revision of **ASTM E2524-08** (2013) previously developed by the NCL)
- 8. Method "In vitro Analysis of Nanoparticle Effects on CFU-GM" (a revision of **ASTM E2525-08** (2013) previously developed by the NCL)
- Method "Evaluation of Cytotoxicity of Nanoparticulate Materials in Porcine Kidney Cells and Human Hepatocarcinoma Cells" (a revision of ASTM E2526-08 (2013) previously developed by the NCL)

Support FNL STAR TREC initiative

Nanomaterials and Nanotechnology IQ Working Group

Part of the International Consortium for Innovation and Quality (IQ) in Pharmaceutical Development.

This working group consists of industry members from:

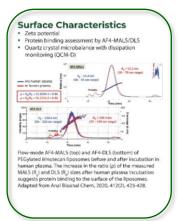
Sunovion Pharmaceuticals

Biogen

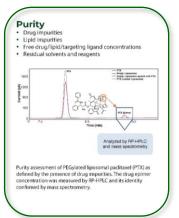
Boehringer Ingelheim

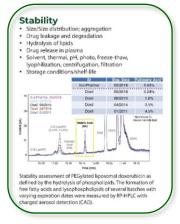
Pfizer

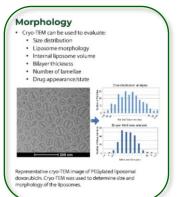
AstraZeneca

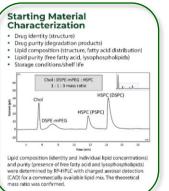

Abbvie

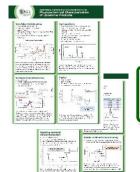
GlaxoSmithKline


- Merck
- Celgene/Bristol Myers Squibb
- Eli Lilly


Parameters, Methods & Considerations for the Physicochemical Characterization of Liposomal Nanoparticles


Size/Size Distribution Dynamic light scattering (DLS) Multi-angle light scattering (MALS) Laser diffraction Cryogenic-transmission electron microscopy (Cryo-TEM) Resistive pubse sensing Asymmetric-flow field-flow fractionation (AF4) – MALS/DLS Batch-mode vs flow-mode DLS Batch-mode vs flow-mode DLS The birdy Mals 2000 Mals 2000

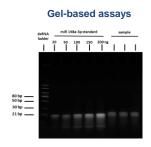

Composition Drug concentration: total, free & encapsulated Drug distribution as a function of size Targeting ligand concentrations total, bound & unbound Individual lipid concentrations: occurrence concentrations Counterion concentrations: interior & exterior Excipient concentrations Particles per ml. concentration Osmolality, viscosity measurements Counterion and excipient concentrations for PEGylated lipposomal doworubkich measured by RR-PEIC with charged across) detection (CAD). Adapted from J Pharm Blomed Anal, 1019, 165, 41-41

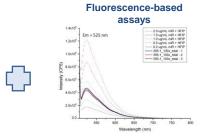


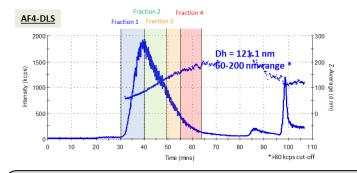
Handout available for download on NCL website

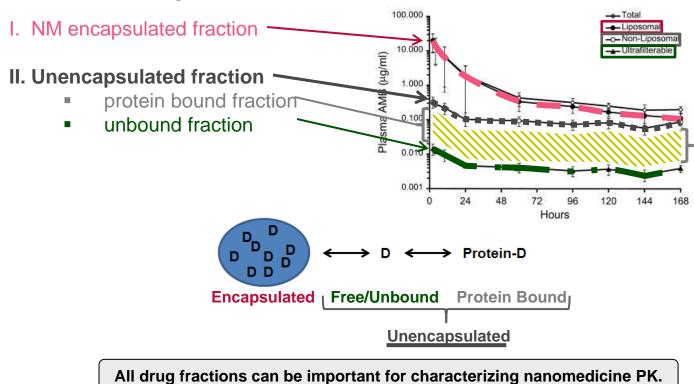
PCC Highlights: Nucleic Acid Quantitation and LNP Characterization

Nucleic Acids as APIs and LNPs as carriers


- Seeing increased application of nucleic acid and LNP technologies
- NCL has seen concepts with mRNA, miRNA, siRNA, DNA, RNA
- Many collaborations with pharma, biotech, academia to develop characterization methods







NCL is developing methods to accurately quantitate total, free and particle-bound nucleic acid components

NCL is developing AF4-based methods that are being used to improve the production process of LNPs

Nanomedicine Pharmacokinetics

Nanomedicine drug fractions in circulation:

Bekersky et. al, Antimicrob Agents Chemother 2002, 46(3):834-40.

DCTD Brefeldin Macromolecular Prodrug Formulation

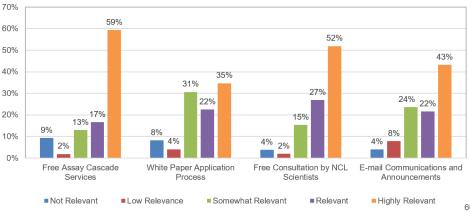
Brefeldin Characteristics			
Active Pharmaceutica Ingredient (DTP identifier)	Stage of Development	Basis for Halting Development	Project Goal for Nanotechnology
(+) Brefeldin-A (NSC 089671)	Preclinical	DLT neurotoxicity	An IV dose of the API-nanoformulation achieves and maintains a plasma concentration ≥ 1 µM for 72 hours.
Brefeldin PLS p	prodrug	Tumor accumulations of Cy7.5 labeled PLS	LOX IMVI 2500 2000 1500 1500 0 3 6 9 12 STUDY DAYS Acidified Saline Vehicle 50 mg/kg PLS-Breflate 100 mg/kg PLS-Breflate 100 mg/kg PLS-Breflate 100 mg/kg Reflate

- Tumor-targeted PLS polypeptide prodrug w/ 13% brefeldin w/w loading
- · Improved anti-tumor activity in comparison to breflate (brefeldin small molecule prodrug)

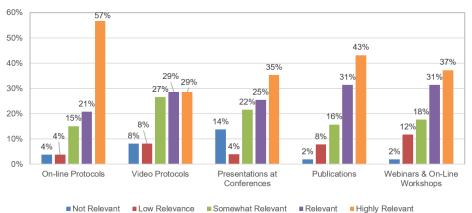
caNanoLab Data Portal: A Resource for Data Sharing

caNanoLab Goal

To provide a nanotechnology resource that facilitates data sharing in the community to expedite and validate the use of nanomaterials in biomedicine

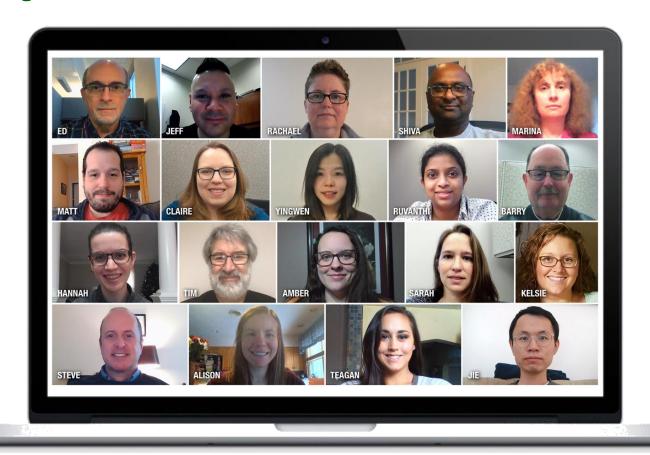


Home Page


- Provides support for the annotation of nanomaterials with composition information, and physico-chemical, *in vitro*, and *in vivo* characterizations
- Provides access to curated information from nanomaterial and nanomedicine samples, protocols, and publications

NCL Operations and Provided Resources are Highly Relevant KPI Survey

Please rank various aspects of NCL operations as they relate to your research needs


Please rank the importance of resources provided by the NCL to your research needs

Nanotechnology Characterization Lab (NCL) Summary

- NCL is a laboratory with unique set of capabilities supporting characterization of nanomaterials and nano-devices used in nanotechnology-based medical interventions
- Over last 16 years, NCL characterized over 450 different nanomaterials and established body of literature on nanoparticle designs and their design correlations with safety and toxicity
- NCL educates research community and disseminates knowledge on evaluation of nanomedicines
- NCL has worked with a diverse pool of researchers representing academia, industry, and government
- NCL is involved in standardization of nanomedicine characterization tools and nanomaterial standards

Acknowledging the NCL Team

www.cancer.gov/espanol