sponsored by the National Cancer Institute

RAS Initiative: Progress and Working Group Update

Dwight Nissley, Director, Cancer Research Technology Program, FNLCR

October 29, 2018

DEPARTMENT OF HEALTH AND HUMAN SERVICES • National Institutes of Health • National Cancer Institute The Frederick National Laboratory is a Federally Funded Research and Development Center operated by Leidos Biomedical Research, Inc., for the National Cancer Institute

Frederick National Laboratory

Ras Initiative: Major Goals

- Discover small molecules that bind to RAS directly or disrupt RAS/effector interactions
 - RAS activity Assays
 - Cell-based / biochemical
 - Biophysical screens
 - Tethering / covalent inhibitors
 - In silico screens
 - Partner through cCRADAs
- Molecular description of RAS/RAF signaling complexes in membranes
 - Biochemistry, biophysics and structural biology
 - RAS/RAF dynamics in cells
 - Molecular dynamic (MD) simulations with DOE National Labs

RAS Initiative Collaborations: Hub and Spokes

Frederick National Laboratory

RAS Resources

In FY2018:

- 1,121 clones generated and sequence verified
- 647 large-scale protein productions (24 grams of protein produced)
- 412 small-scale protein production scouting experiments performed
- 427 liters of insect cell protein expression culture grown, 100 liters of baculovirus produced
- 1,750 liters *E. coli* protein expression culture grown
- 230 cell lines generated

Overall since 2014:

- 7,057 plasmids distributed through Addgene
 - 314 universities and NPOs, 38 states, 36 countries, 6 continents
- 119 MTAs for direct distribution (323 plasmids, 476 cell lines)
- RAS-dependent MEFs licensed to 5 companies
- KRAS-FMe materials licensed to 4 companies

Structural Biology Reveals Potential Therapeutic Opportunities

Pockets in oncogenic KRAS mutants

Switch-1 Switch-2

WT-KRAS bound to GMPPNP and Mg

G12C in complex with GMPPNP and Mg

G13D in complex with GMPPNP and Mg

Q61L in complex with GMPPNP and Mg

In silico screening

٠

Frederick National Laboratory for Cancer Research

- In silico screening in collaboration with Nir London, Weizmann Institute of Science, Israel.
- Hits validated using SPR and NMR (Andy Stephen, RAS Biophysics)

G12C in complex with GMPPNP and Mg

- 6 out of 14 compounds showed weak binding to G12C mutant by SPR
- Test these 6 compounds for binding by NMR
- Testing additional 44 analogs for SPR binding

Nir London (Weizmann) L. Bindu, Andy Stephen (FNLCR)

cCRADAs Amplify RAS Initiative Efforts

RAS cCRADAs

Sanofi

All efforts are in-kind, Chemistry supported by Sanofi, Biology shared between Sanofi and FNLCR Project team: 8 FNLCR, 24 Sanofi

Proposal to carry out fragment screen against Oncogenic KRAS allele under negotiation

Kyras

Funds to support 1 FTE equivalent over 2 years

Project team: 4 FNLCR, 5 Kyras

Beatson

Funds to support 5 FTE equivalents over 2 years

Hired 3 new employees, additional funds are to support existing FNLCR staff

PharmaArava

Funds to support 2 FTE equivalents over 2 years

Chemistry supported by PharmaAarava, Biology supported by FNLCR

TheRas

Expanded to support 6 FTE equivalents over 2 years (chemistry and in silico modeling and design) Chemistry shared between TheRas and FNLCR, Biology supported by FNLCR Theras engaged CROs for additional chemistry and LLNL for *CADD*

Contractor Cooperative Research and Development Agreement (cCRADA)

Agreement between FNLCR and a private company or university to work together on research and development.

Provides IP protections to the collaborator.

In-house discovery efforts transition to cCRADA with Theras

Anna Maciag

David Turner Vandana Kumari Marcin Dyba Chris Brassard Joseph Saavedra Brian Smith

Small Molecules that prevent Kras4b membrane localization

KRAS4B HKEKMSKDGKKKKKKSKTK<mark>C</mark>VIM linker fragment cap Compound X Target Protein **Target Protein** Target is screened against a library of disulfide containing geranylgeranyl farnesyl fragments under reducing conditions transferase transferase **Myr-Kras** KRas4b G12D 48 hr induction G12D/C185S (membrane fraction) (membrane fraction) 150₇ **CTRL** 994566, 30µM 994566 (µM) % Activity FOV Mean PM GFP 20 30 20 30 0 0 100 **KRas** 50-Vinculin 0-10 100 994566 (µM)

Frederick

Laboratory for Cancer Research

National

Covalent derivatives of tethering hits modify C185

MD simulation of HVR dynamics in KRAS4b

blue – GDP-loaded KRAS G-domain orange – GDP- loaded KRAS HVR cyan – GTP-loaded KRAS G-domain red – GTP-loaded KRAS HVR

HVR interaction with G-domain may generate a binding pocket

Lixin Fan, The Small-Angle X-ray Scattering Core Facility, NCI

Frederick National Laboratory

Targeting C185 - Status

- C185 covalent binders are KRAS4b specific
- Prevent prenylation at C185 and membrane localization
- Inhibit proliferation of KRAS4b-dependent cell lines
- MD simulations suggest that the HVR interacts with the G-domain to form a pocket
- Potency/selectivity increased by CADD/Med Chem
- Design and synthesis of analogues in progress

Covalent derivatives of tethering hits also modify H95

KRASFAINNTKSFEDIHHYREQIKRVKDHRASFAINNTKSFEDIHQYREQIKRVKDNRASFAINNTKSFADINLYREQIKRVKD

Targeting H95 - status

- H95 binders are KRAS specific
- Docking/MD/NMR suggest a pocket between Helix3/Switch2
- Bind to KRAS, not RhoA (by SPR)
- Design and synthesis of analogues in progress

RAS Inhibitor development

Frederick National Laboratory

Advanced Computation to better Understand RAS Biology

Fred Streitz, Director HPC, LLNL

DOE Lead for Pilot 2

DOE-NCI partnership to advance exascale development through cancer research

Experimental Gaps – Activation of RAF

 RAS structure in context of membrane

Frederick

Laboratory for Cancer Research

National

- RAS dynamics
 - states
- RAS
 - monomer/dimer/multimer
 - Interfaces
- RAF structure
- RAS:RAF engagement
 - Order of addition
 - Activation/conformational dynamics
- Local lipid environment

RAS Initiative studies used as input to parameterize **MD** simulations: KRAS4b

Frederick National Laboratory for Cancer Research

0.9

-0.8

07

0.6

- 0.5

0.4 0.3

0.2

0.1

140

Andy Stephen, Que Van

Rebika Shresta, Tommy Turbyville

Initial KRAS:membrane Simulations

A framework to couple macro and micro scale simulations

New framework simulation of longer time and length scales

First Run on Sierra: RAS Dynamics

First-of-a-kind simulations will explore:

- Dependence of KRAS mobility and and dynamics as a function of membrane environment
- Aggregation of KRAS in context of realistic membrane
- Effect of KRAS concentration on local membrane composition

On-the-fly feedback from the macro simulations improve micro model parameters

Frederick National Laboratory for Cancer Research

- Online analysis of state dependent RAS lipid interactions
- Micro model parameters are updated after unbiasing through the ML framework

Tim Carpenter, LLNL

Simulation predicted RAS-Lipid contacts

Frederick **National** Laboratory for Cancer Research

0

Frederick National Laboratory

- RAS Initiative has consolidated to two primary focus areas
 - Directly Targeting KRAS
 - Understanding the biology of KRAS in the context of the plasma membrane
- Identified novel classes of compounds that specifically target KRAS
- Multiple screens to identify leads are ongoing
- Working with DOE National Labs to bridge experimental gaps using computation
- Partnering with Biotech, Pharma and NCI to develop leads and push towards clinic