Frederick National Laboratory for Cancer Research

sponsored by the National Cancer Institute

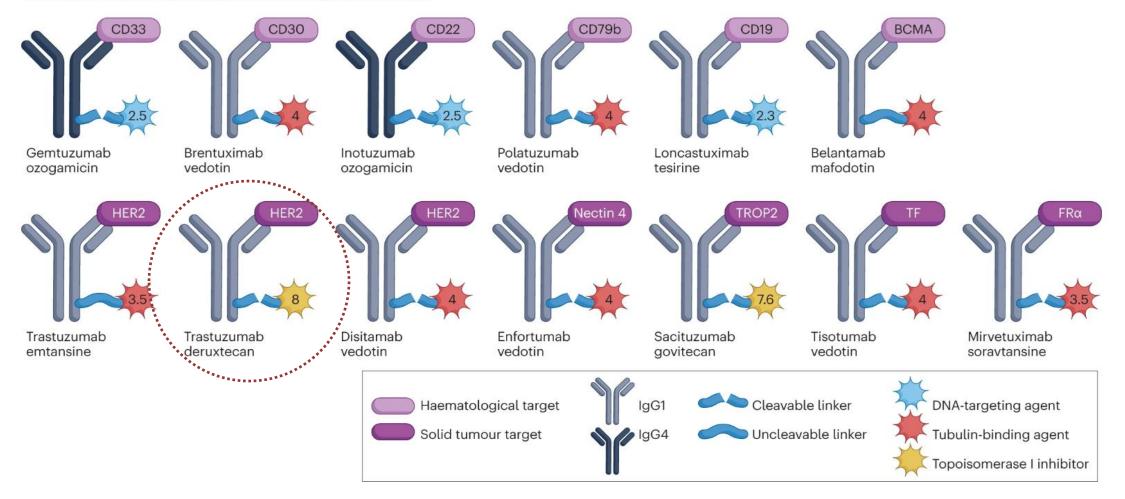
Molecular Pharmacodynamics of an ADC: DS-8201a July 10, 2023 FNLAC Meeting

Ralph E Parchment, PhD

Managing Director, Pharmacodynamic Biomarkers Program (a R&D program supporting DCTD)

Leidos Biomedical Research, Inc

DEPARTMENT OF HEALTH AND HUMAN SERVICES • National Institutes of Health • National Cancer Institute

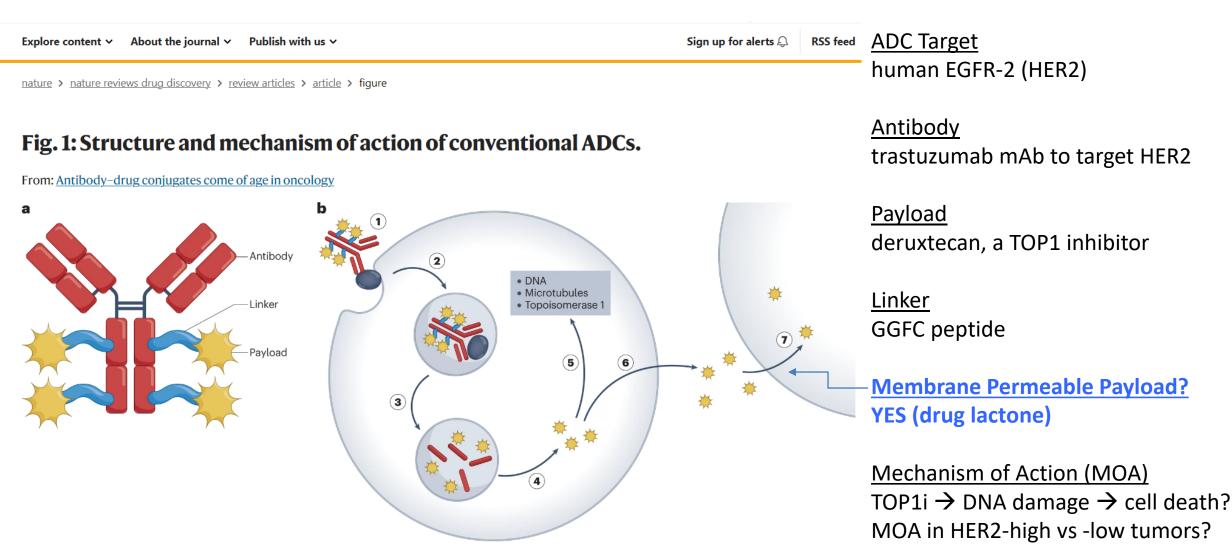

Frederick National Laboratory is a Federally Funded Research and Development Center operated by Leidos Biomedical Research, Inc., for the National Cancer Institute

Antibody-Drug Conjugates (aka "ADCs")

Fig. 2: Main characteristics of approved ADCs. Dumontet et al (2023) Nat Rev Drug Discov https://doi.org/10.1038/s41573-023-00709-2

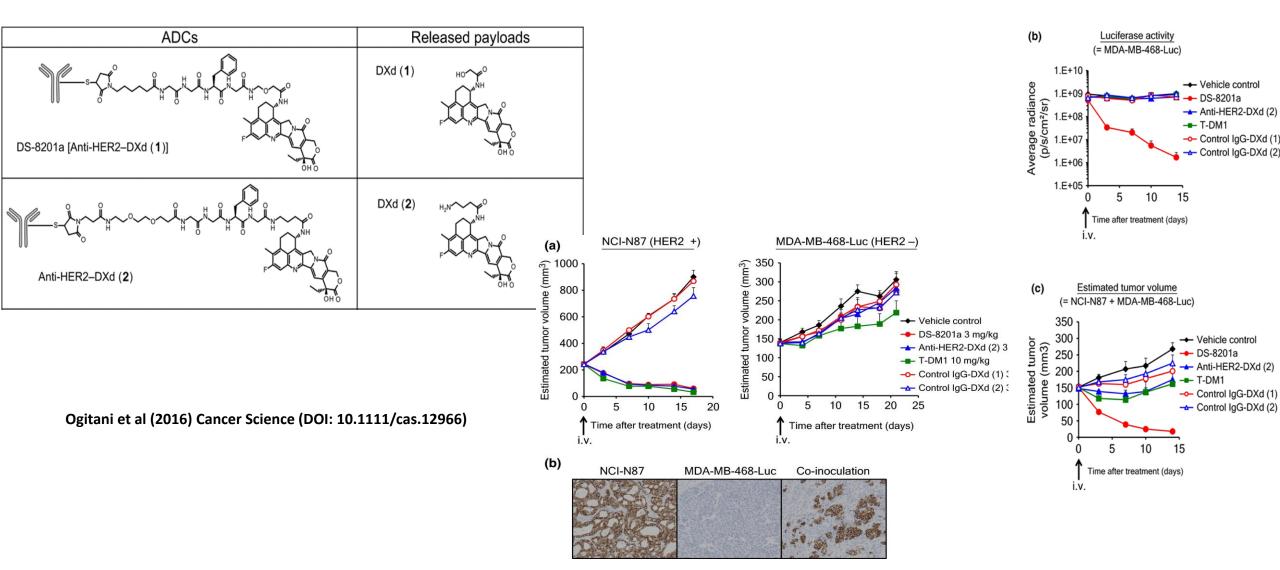
From: Antibody-drug conjugates come of age in oncology

trastuzumab deruxtecan, the API in Enhertu[®] (aka DS-8201a, T-DXd, NSC 807708)


FDA-approved indications (https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761139s021lbl.pdf, 8/2022; accessed July 2023)

- adult patients with unresectable or metastatic HER2-positive breast cancer who have received a prior anti-HER2based regimen either in the metastatic setting or in the neoadjuvant or adjuvant setting with disease recurrence during/within 6 mos of completing therapy (DESTINY-Breast01, -Breast03 trials, NCT03248492, NCT03529110, randomized vs ado-trastuzumab emtansine)
 - HER2 expression: HER2 IHC 3+ or ISH-positive archival tissue tested at central laboratories
- adult patients with unresectable or metastatic HER2-low (IHC 1+ or IHC 2+/ISH-) breast cancer who have received a prior chemotherapy in the metastatic setting or developed disease recurrence during or within 6 months of completing adjuvant chemotherapy (DESTINY-Breast04 trial, NCT03734029, randomized vs physician's choice of chemotherapy, NEJM 2022)
 - HER2 expression: HER2 IHC 1+ or IHC 2+/ISH-negative archival tissue tested at a central laboratories
- adult patients with unresectable or metastatic non-small cell lung cancer (NSCLC) whose tumors have activating HER2 (ERBB2) mutations (local labs), as detected by an FDA approved test, and who have received a prior systemic therapy (accelerated approval based on ORR and DR) (DESTINY-Lung01 and –Lung02, NCT03505710, NCT04644237))
- adult patients with locally advanced or metastatic HER2-positive (IHC 3+ or IHC 2+/ISH-central lab) gastric or gastroesophageal junction adenocarcinoma who have received a prior trastuzumab-based regimen (DESTINY-Gastric01, NCT03329690)

trastuzumab deruxtecan, the API in Enhertu[®] (aka DS-8201a, T-DXd, NSC 807708)



similar MOA to topotecan?

Dumontet et al (2023) Nat Rev Drug Discov https://doi.org/10.1038/s41573-023-00709-2

trastuzumab deruxtecan (DS-8201a, T-DXd) by-stander effect and membrane permeability

trastuzumab deruxtecan, the API in Enhertu[®] (aka DS-8201a, T-DXd, NSC 807708)

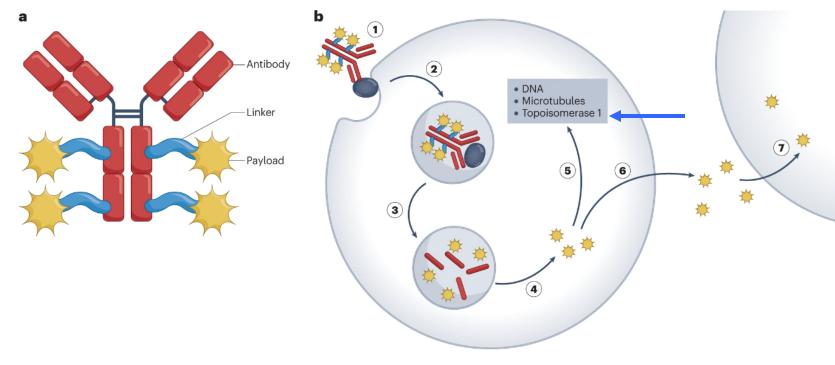
ADC Target human EGFR-2 (HER2)

RSS feed

Antibody trastuzumab mAb to target HER2

<u>Payload</u> deruxtecan, a TOP1 inhibitor

Linker GGFC peptide

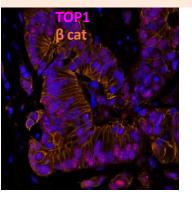

Membrane Permeable Payload YES (drug lactone)

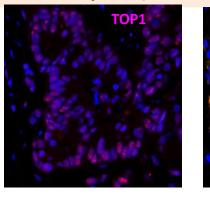
Mechanism of Action (MOA) TOP1i → DNA damage → cell death? MOA in HER2-high vs -low tumors? similar MOA to topotecan?

From: Antibody-drug conjugates come of age in oncology

nature > nature reviews drug discovery > review articles > article > figure

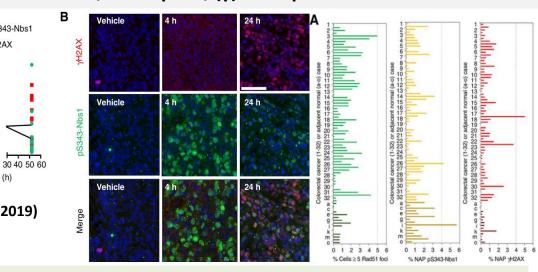
Dumontet et al (2023) Nat Rev Drug Discov https://doi.org/10.1038/s41573-023-00709-2


trastuzumab deruxtecan (DS-8201a, T-DXd) - studying MOA using PD biomarker tools


TOP1cc A

ß cat

OF PRESENT AND A DESCRIPTION OF THE PRESENT OF THE


nuclear PD Biomarkers of the TOP1 covalent complex: loss of nuclear TOP1, ccTOP1-pY⁷²³ (mAb from S. Kaufmann)

unpublished

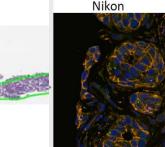
nuclear PD Biomarkers of DNA Damage Response (DDR): RAD51, NBS1-pS³⁴³, (y)H2Ax-pS¹³⁹

translational SOPs to preserve labile phosphorylation sites in tumor specimens (from DCTD "Research Resources" website)

γH2AX, pNBS1	t
IFA with β -CATN	
Segmentation,	
IEA	

umor	SOP340507	SOP340550
	Tumor Frozen Needle	Tumor Frozen Needle Bi
	Biopsy Specimen	Preparation for
	Collection, Handling	Pharmacodynamic
	and Shipping for	Immunofluorescence Ass
	PADIS, Frederick	Utilizing Murine Testis an
	National Laboratory for	Jejunum Control Tissues
	Cancer Research	
	(FNLCR)	
	SOP340567	
	Tumor Frozen Needle	
	Biopsy Specimen	Kinders
	Collection, Handling	Parchme

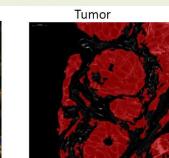
and Shipment to EET

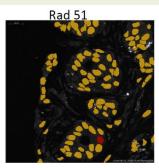

Biobank

SOP340543

vH2AX, pNBS1 IFA Staining Image Extraction and with β-Catenin Segmentation Analysis of Tumor for Tumor Biopsy Slides Biopsy Slides from SOP340544 vH2AX, pNBS1 IFA Whole Slide Image Capture with **B**-Catenin of Tumor Biopsy Slides for Segmentation vH2AX, pNBS1 Immunofluorescence Assay with β-Catenin Segmentation

SOP340545


et al (2008), Srivastava et al (2016) Parchment and Doroshow (2016) Ferry-Galow et al (2018) Ferry-Galow and Chen (2019), Levy et al (2020) image analysis algorithms to restrict biomarker analysis to tumor cells (segmentation)



--- pS343-Nbs1

20 Time post gemcitabine dose (h)

Wilsker et al (2019)

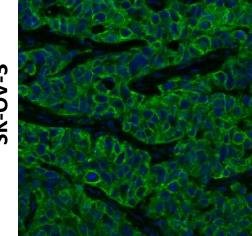
Frederick National Laboratory for Cancer Research

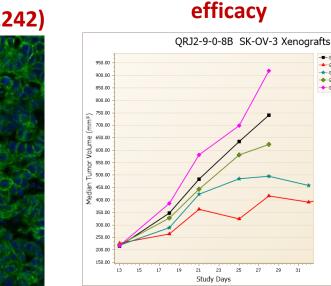
DS-8201a engagement of the TOP1 drug target in HER2+ human tumor xenografts

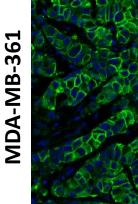
-- Group 01, vehicle control Q7Dx3, IV

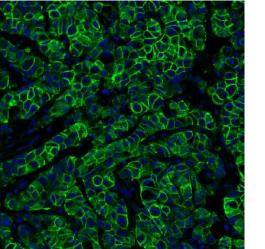
- Group 02, D58201A 10 mg/kg, Q7Dx3, IV * Group 03, D58201A 10 mg/kg, Q14Dx2, I

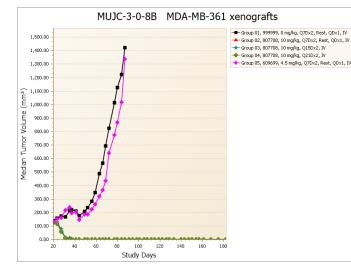
Group 04, DS8201A 10 mg/kg, QD×1, IV

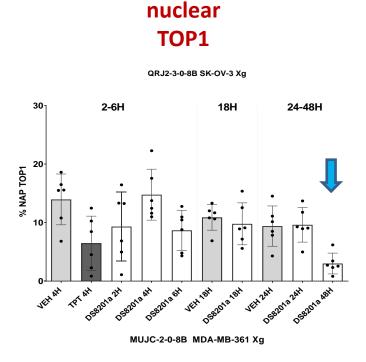

Group 05, topotecan 4.5 mg/kg, Q7D×3, IP

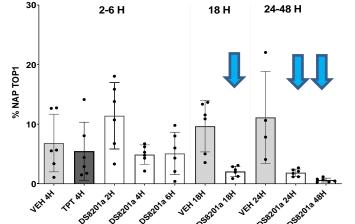


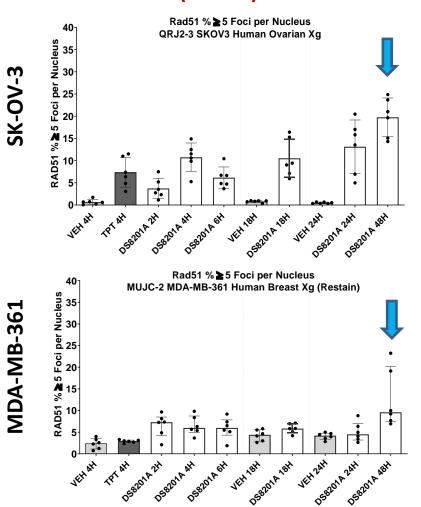

nuclear


(p)TOP1cc

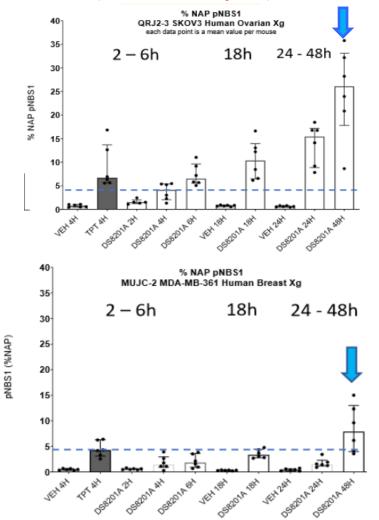

HER2 protein in tumor xenografts (CST cat #2242)






not detectable in vivo

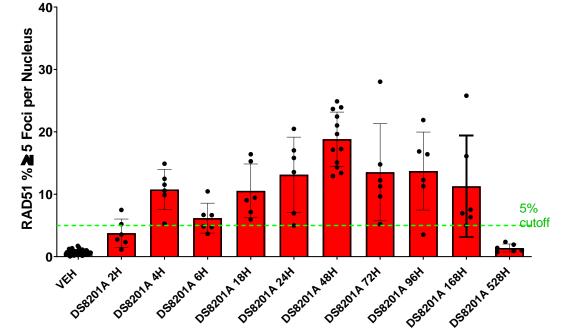
not detectable in vivo

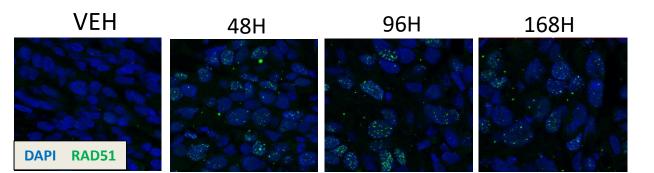

DS-8201a-induced DNA damage responses in HER2+ human tumor xenografts

nuclear RAD51 foci (ssDNA)

nuclear pNBS1 (in MRN complex)

nuclear γH2Ax DSB, DNA laddering

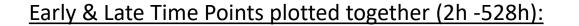

not detected

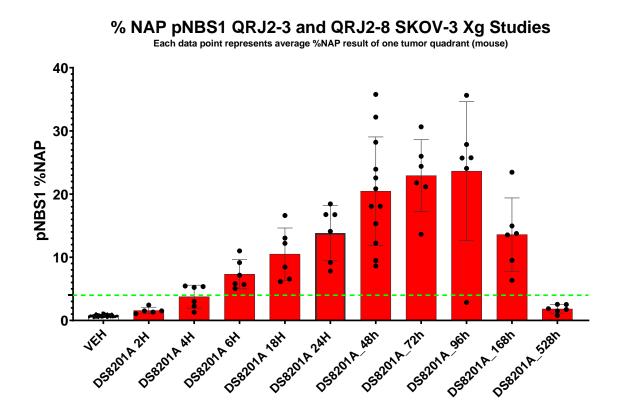

not detected

Fit-for-Purpose Modeling of PD Biomarkers of DDR in a HER2+ human tumor model

Rad51 % ≥ 5 Foci per Nucleus SKOV3 Human Ovarian Xg Studies (QRJ2-3, QRJ2-8)

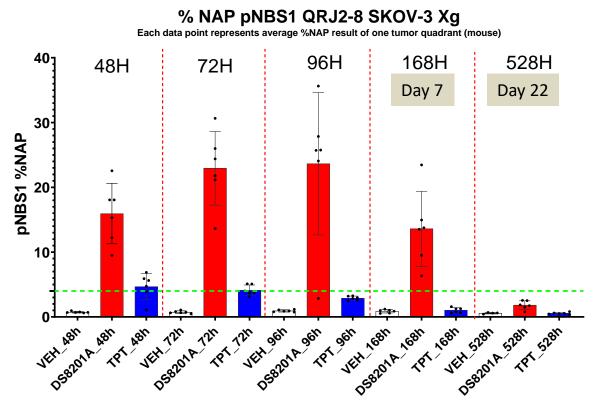
Late Time Points (48h - 528h)


Rad51 % ≥ 5 Foci per Nucleus QRJ2-8 SKOV3 Human Ovarian Xg



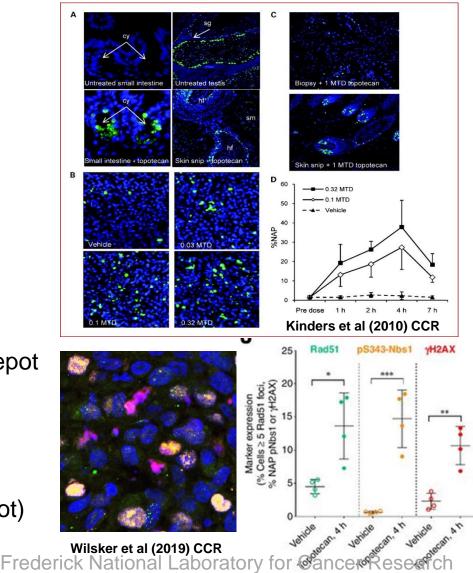
DS-8201a treatment Topotecan treatment

Fit-for-Purpose Modeling of PD Biomarkers of DDR in a HER2+ human tumor model



DS8201 treatment

TPT treatment

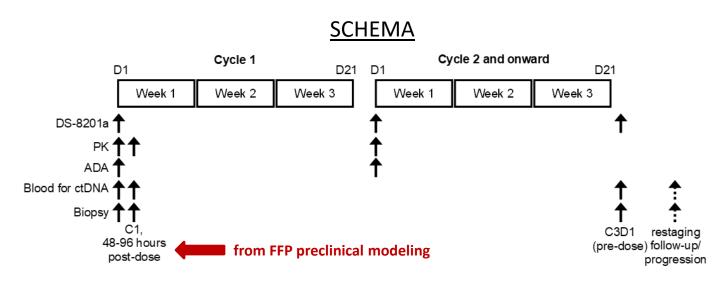


Late Time Points (48h - 528h)

Translational Pharmacodynamics of DS-8201a - informing clinical trial design

- rapid reduction in nuclear pTOP1cc precludes analysis in patients
- PD biomarkers of DDR are fit-for-purpose for clinical use:
 - biopsy sampling window is 48-96 hours after drug administration
 - multiple PD biomarkers of DDR response provide opportunity to corroborate MOA
 - protein phosphorylation is stabilized by lab-developed SOPs for point-of-collection specimen preservation
- lack of γH2Ax response is informative, but surprising, given its robust response to topotecan in xenograft models
 - does release and diffusion of drug payload behave more like a depot dosage form, with a low C x prolonged t ?
 - not classical apoptotic cell death? (Dull et al (2018) Oncotarget)
- robust DDR response indicates the need to trace subsequent DDR events, their cell cycle context, and their connection to cell death (or not)

Translational Pharmacodynamics of DS-8201a - confirmed MOA in patients



"Pilot Study of DS-8201a Pharmacodynamics in Patients with HER2-expressing Advanced Solid Tumors"

NCT Number: 04294628

LAO: NCI – Developmental Therapeutics Clinic (NIH Clin Ctr)

Principle Investigator: Alice P Chen

Primary Objective:

• To assess the effects of DS-8201a on total TOP1 levels in biopsy specimens from patients with HER2expressing advanced solid tumors, at early and late posttreatment time points, thereby establishing the degree and duration of DS-8201a target engagement

Eligibility:

- Patients ≥ 18 years of age, solid tumors who progressed on standard therapy, or no available standard therapy
- Biopsiable tumor
- HER2 IHC score of ≥1+ (CLIA-certified IHC) <u>or</u> *HER2* amplification (CLIA-certified NGS or ISH)

Study Design:

Mandatory tumor biopsies at baseline and at 2 posttreatment time points, including one between 48-96 hours after dose 1, to assess TOP1 and DDR responses and their duration

Frederick National Laboratory for Cancer Research

Translational Pharmacodynamics of DS-8201a - confirmed MOA in patients (NCT04294628)

Molecular Pharmacodynamic Response in Tumor Biopsy (48-96 hrs after Dose 1)								
PT ID#	HER2	Dx	TOP1	TOP1cc	RAD51	pNBS1	γH2Ax	Response (Rx cycles)
19	2	OvCa	\checkmark	nmc*	\uparrow	\uparrow	nmc	PR (17)
12	2	uterine (serous)	nmc	nmc	nmc	nmc	nmc	PD (3)
16	erbB2 amp	CRC	\checkmark	nmc	\uparrow	\uparrow	nmc	SD (6)
33	erbB2 amp	bladder	\checkmark	\checkmark	\uparrow	\uparrow	nmc	PD (3)
36	1	parotid	nmc	nmc	1	1	nmc	SD (5)

*nmc, no molecular change

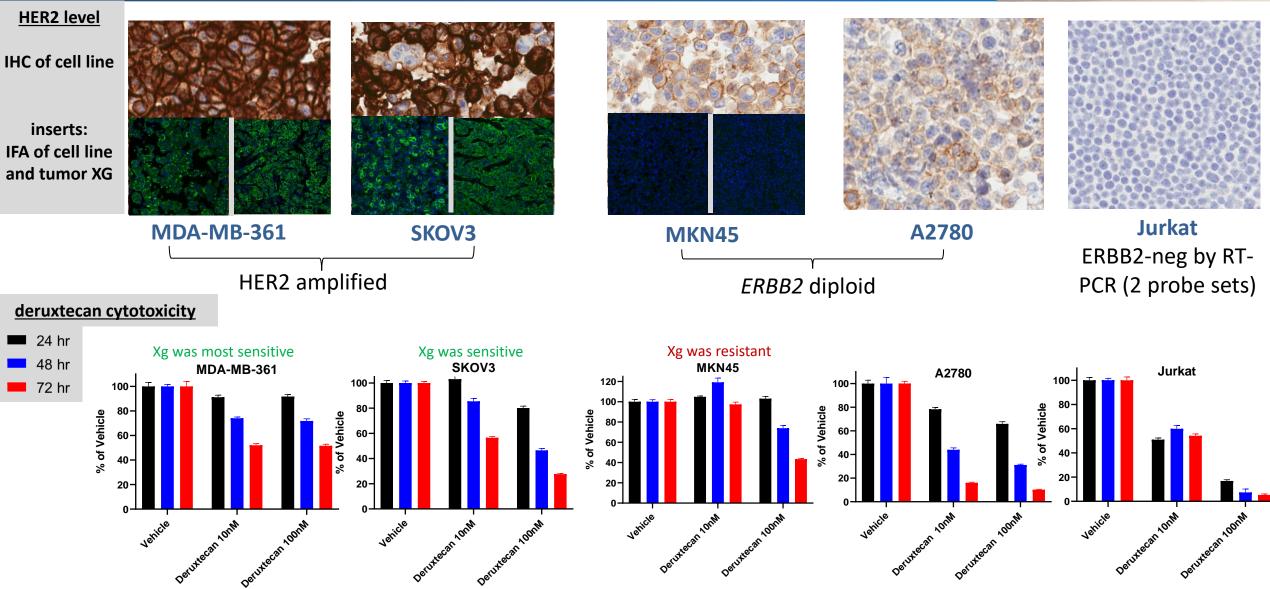
Frederick National Laboratory for Cancer Research

Antibody Drug Conjugates conclusions and planned studies

Conclusions

- fit-for-purpose studies in human tumor xenograft models accurately identified a crucial timeframe for tumor biopsy
- clinical PD biomarker responses to drug action occurred in HER2-low tumors (IHC 1+, 2+)
- PD study confirmed the intended MOA of DS-8201a in multiple cancer histologies

TOP1i $\checkmark \rightarrow$ DNA damage $\checkmark \rightarrow$ repairable vs catastrophic damage ? \rightarrow cell fates ?


- unexpected result: nuclear γH2Ax foci have *not* been detected during the DDR response to DS-8201a
- there are multiple, independent determinants of tumor response to HER2-targeting ADCs:
 - cell surface HER2 expression → delivered dose of TOP1i and resulting intratumor concentration (as a depot form?)
 - higher susceptibility to TOP1cc-mediated, catastrophic DNA damage \rightarrow needs lower delivered dose of TOP1i \rightarrow lower HER2 level
 - membrane permeability of the released payload \rightarrow cytotoxic effect on HER2-negative by-stander cells (tumor heterogeneity)

Planned Studies of DS-8201a

- extend studies to PD biomarkers of later events in DDR and their association with catastrophic DNA damage
- use PD biomarkers of DDR to compare MOA in HER2-high, -low and "-0+" human tumor models
- determine the PD biomarker profile of the minimum effective dose of DS-8201a in TOP1i-susceptible, HER2 1+ and HER2 0+ tumor models (Q: what is the HER2/DDR profile of a DS-8201a responsive tumor?)

Laboratory Models Differing in HER2 Levels and Deruxtecan Sensitivities

DCTD Pharmacodynamic Biomarkers Program

NCI/DCTD

James Doroshow Alice Chen Geraldine O'Sullivan Coyne Naoko Takebe DT Clinic staff NIH CC Interventional Radiology CTEP Investigational Drug Branch Melinda Hollingshead (DTP/BTB)

DT Clinic patients & families

FNLCR/LBRI

Managing Director - Ralph Parchment ChangSoo Kim, Kay Gray
IQC Team Lead – Kate Ferry-Galow
Gabe Benton, Victor Lonsberry, Rachel Andrews, Amy Pantella
DDR Team Lead - Deb Wilsker
Angie Dull, Asma Begum, Hima Gali, Huanlian Chen, Alan Brooks, Weimin Zhu
CTC Team Leader-Lihua Wang
Brandon Miller, Sonny Khin, Francis Owusu
In Vivo Models – Dianne Newton
the entire BTB support program
Protein Expression Laboratory - Dominic Esposito
Clinical Specimen Lab (NIH Bldg 10) - Allyson Parr, Emily Lu
Clinical Protocol/Medical Writing – Melanie Simpson
Laura Kuhlmann, Sarah Miller
Lab Animal Sciences Program
Pathology/Histopathology
Lab Animal Husbandry

Questions?