
Immune Cell Engineering for the Extramural Community: Recent Progress at the Frederick National Laboratory for Cancer Research

Rose Aurigemma, PhD Deputy AD, Developmental Therapeutics Program DCTD, NCI

National Institutes of Health

July 13, 2020 FNLAC

National Institutes of Health

Topics

- Brief Introduction to Cell Therapy
- > Project updates
- Capability updates
- Facility upgrades
- Filling the queue

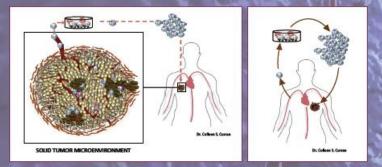
Biopharmaceutical Development Program (BDP) at the Frederick National Laboratory for Cancer Research

- > The BDP is contractor-operated cGMP manufacturing facility supporting phase I/II clinical trials
- Extramural/Intramural research discoveries translated to patient therapies
- Process development, manufacturing, fill/finish, QC, QA and regulatory affairs
- > Biologic product types include: MAbs, recombinant proteins, oncolytic viruses, AAV, plasmids, vaccines
- > NCI investment in BDP to establish cGMP capabilities to support cell therapy
- Extramural access to resource through NCI NExT program (next.cancer.gov)

Frederick National Laboratory for Cancer Research

National Institutes of Health

A look back at FNLAC October 2018 Anthony Welch: Future planning

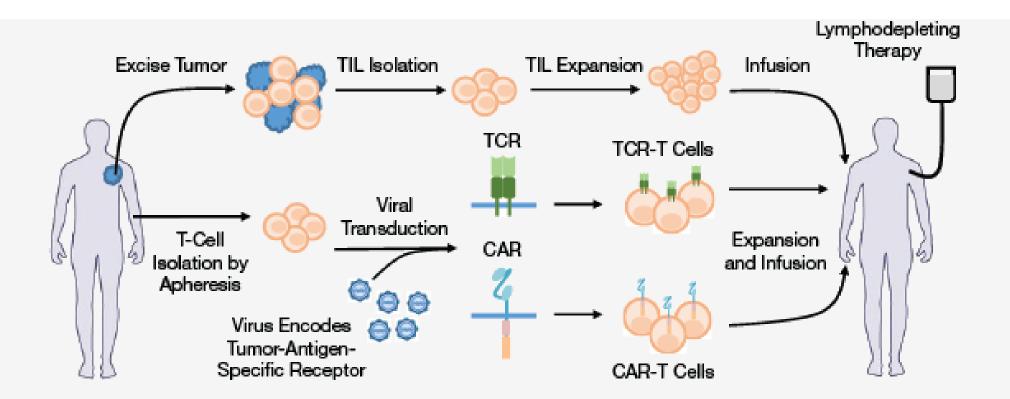

- DCTD/NCI Workshop on Cell Therapy for Solid Tumors, Dec 10-11, 2018.
 Guidance from cell immunotherapy community, FDA and other stakeholders for continued NCI investment prioritization.
- Convert B2300/B2310 labs into cell therapy production suite to re-utilize VPF for virus production. Renovations estimated for completion in Sept 2019.
- Gain experience in centralized manufacturing logistics for supporting multi-center clinical trials from the DCTD/BDP.
- BDP development of in-process and release testing SOPs for improved reproducibility and faster tech transfer to point-of-care options.

National Institutes of Health

NIH NATIONAL CANCER INSTITUTE

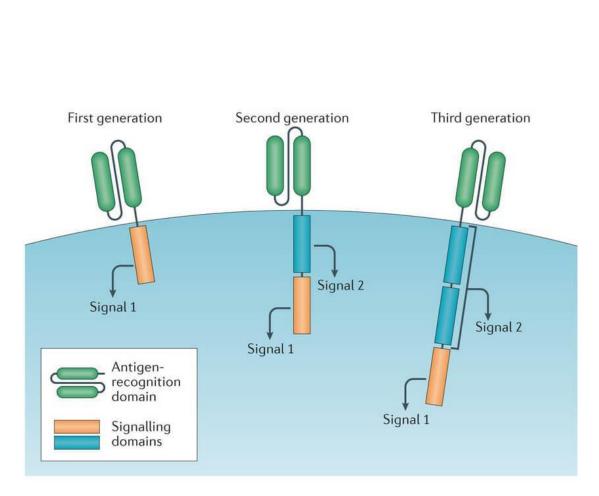
Workshop on Cell-based Immunotherapy for Solid Tumors

December 10–11, 2018 Rockledge Plaza, 6700B Rockledge Drive Bethesda, MD


The National Cancer institute invites the extramural community to inform the NCI regarding the current state of preclinical and clinical development for cell-based immunotheraples for cancer.

Research needed:

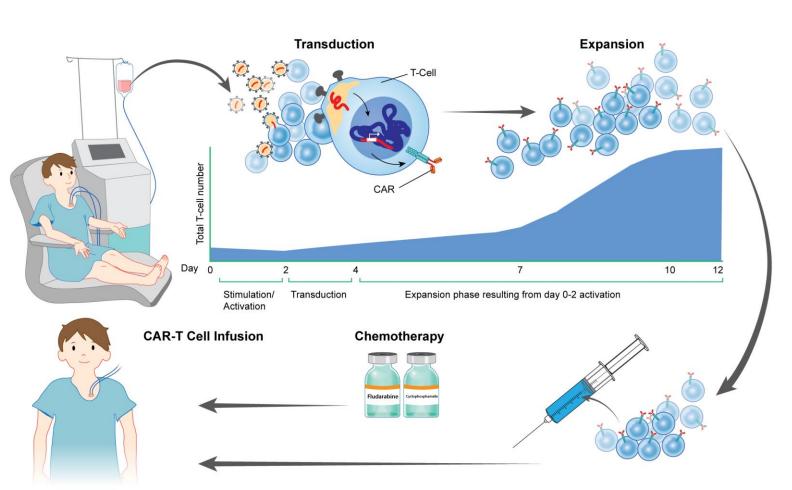
- Targeting, affinity, cross-reactivity
- Improve trafficking and tumor penetration, non-invasive imaging
- Overcome inhibitory TME
- Explore autologous vs. allogeneic products; CAR-T vs. TIL vs. NK vs. DC vaccine, etc.
- In vivo gene editing of immune cells
- Clinical development challenges
- Technology challenges:
 - gene transfer, cell production
- Regulatory challenges


2nd Workshop planned for December 2020

National Institutes of Health Tumor Infiltrating Lymphocytes (TIL) vs T Cell Receptor-T cells (TCR-T) vs Chimeric Antigen Receptor-T cells (CAR-T)

National Institutes of Health

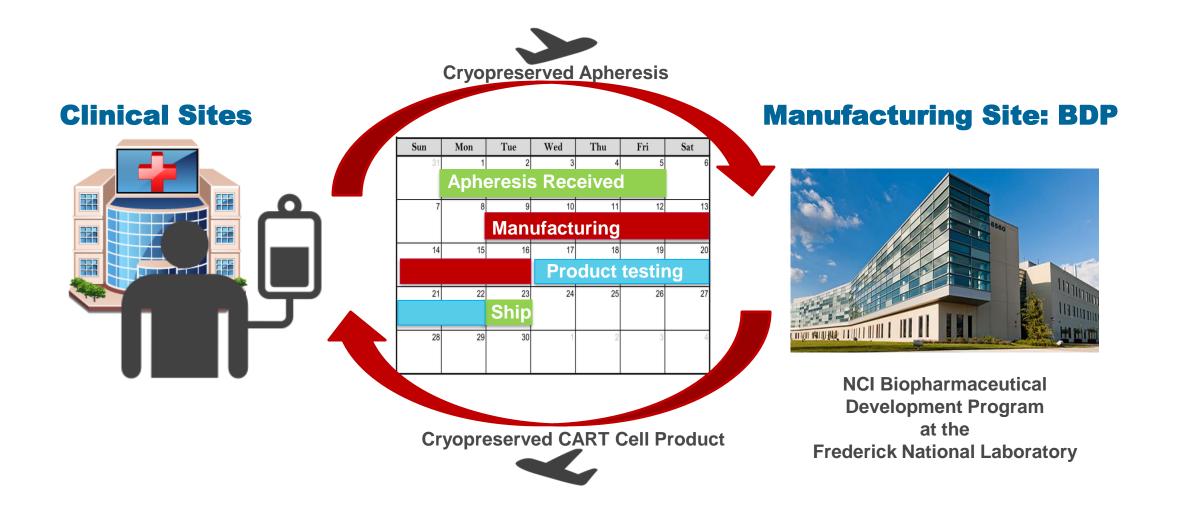
What is CAR-T Cell Therapy?



- Chimeric Antigen Receptor
- Customized receptor:
 - Extracellular antigen-binding domain
 - Intracellular signaling domain of T cells
- Retains the functionality of a Tcell with the antigen recognition properties of antibody and is MHC-independent.

Nature Reviews | Clinical Oncology

National Cancer Institute


CAR-T Cell treatment is complex

- 1) Apheresis, then select T-cells
- 2) Stimulation and Transduction
- 3) Expansion
- 4) QC and Safety Testing
- 5) Lymphodepletion
- 6) Infusion

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

Cyro-to-Cryo Manufacturing Logistics

National Institutes of Health

Harnessing the BDP to support cell therapy for cancer

 cGMP manufacturing provides QA rigor and reproducibility for cell therapy products when <u>"the process = the</u> <u>product</u>".

- Experience with product chain logistics to support multi-center trials
- Provide cGMP-grade transduction vectors: lentivirus, gamma retrovirus, AAV
- Collaborate with FDA, NIST, other stakeholders to standardize product characterization assays and provide to the cell therapy community

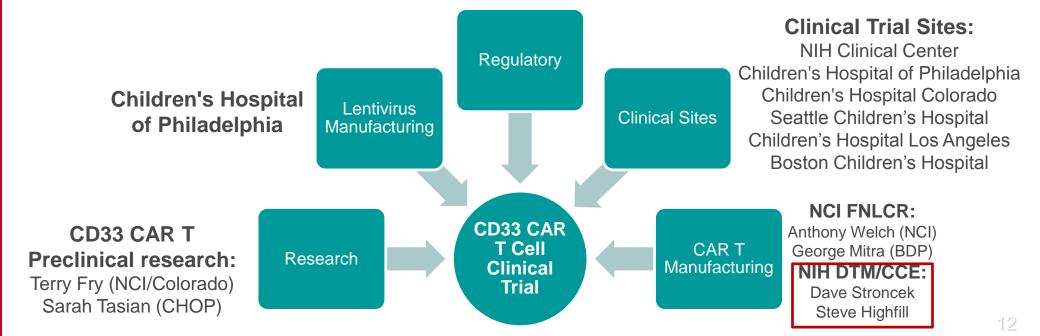
CAR-T manufacturing in ATRF Virus Production Facility

Status of clinical trials supported by centralized manufacturing at NCI/FNLCR

Clinical Trial	Sponsor	Status
Phase 1/2 Study of Anti-CD33 Chimeric Antigen Receptor Expressing T-Cells (CD33CART) in Children and Young Adults with Relapsed/Refractory AML	Pediatric Blood & Marrow Transplant Consortium (PBMTC)	 IND: July 2019 Site Activation: January 08, 2020 First Subject Enrolled: February 12, 2020 Two patients infused to date
GD2-CAR PERSIST: Production and Engineering of GD2-Targeted, Receptor Modified T Cells for Sarcoma and Neuroblastoma to Increase Systemic Tumor Exposure	NCI/CTEP Pediatric Cancer Immunotherapy Trials Network (PED-CITN)	IND submission target August 2020

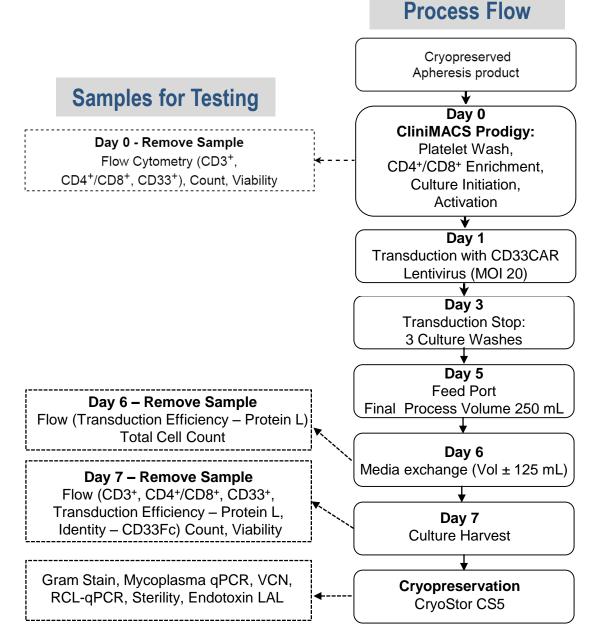
U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

CD33CAR-T for pediatric acute myeloid leukemia (AML)


Clinical Trial sponsor:

pediatric blood & marrow transplant consortium

Clinical Trial Co-Pls: Nirali Shah (NCI, CCR) Richard Aplenc (CHOP)



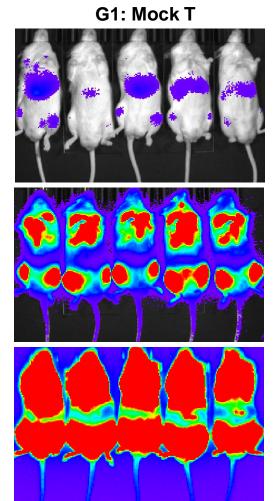
U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

CD33 CART is manufactured with 7-day process

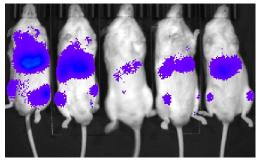
Process flow and timeline are project-specific

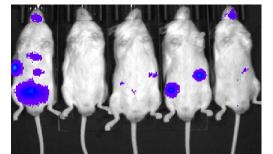
U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

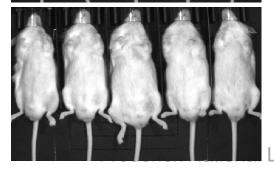
Prodigy-manufactured CD33 CART retain potency



Day 0: IV 1E6 MOLM14-GL Day 3: ADT 5.2E6 CAR⁺ T cell


ADT Day 3


Day 10


Day 17

G2: CD33 CART

Study Performed by Haiying Qin, NIH/CCR

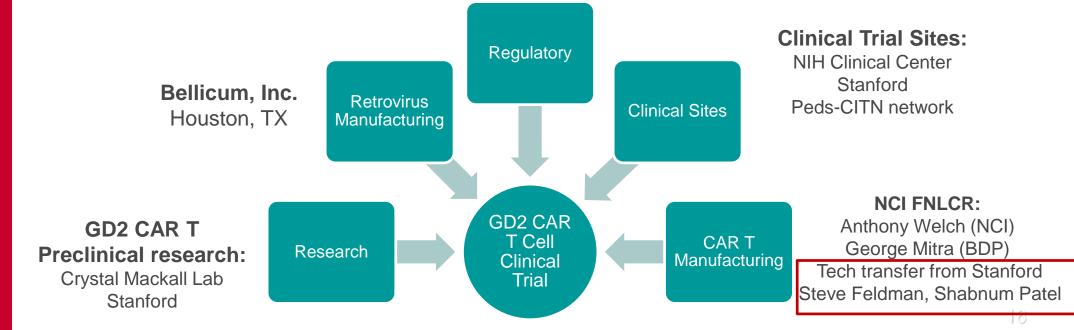
_aboratory for Cancer Research

National Institutes of Health

CD33 CART production using Prodigy demonstrates:

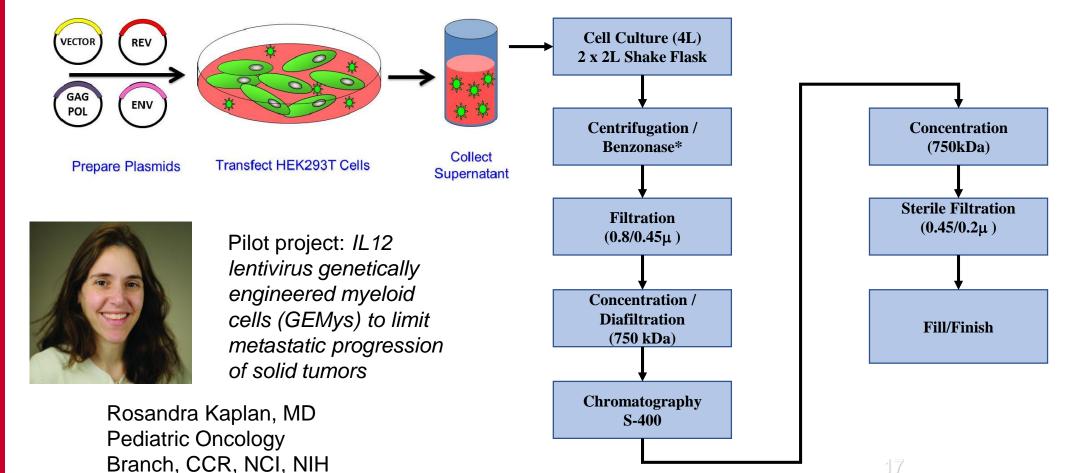
Robust selection for CD3⁺ population using AML patient apheresis samples with low or high CD33⁺ blast cells present

	Process Parameters	Healthy volunteer run1	Healthy volunteer run2	AML Patient with low CD33+ blasts	AML Patient with high CD33+ blasts
Day 0	CD3+	59.3%	56.4%	78.8%	1.4%
Day	CD33+	<1.38%	<1.38%	1.41%	30.08%
Deet	CD3+	92.08%	94.92%	78.6%	69.8%
Post CD4/CD8	CD4+/CD8+ Ratio	1.8	1.8	0.49	2.89
selection	Seeding density	1e8	1e8	1e8	1e8
Selection	Lentivirus MOI	20	20	20	20
	TE (% protein L)	42.2%	41.8%	34.7%	23.7%
	TNC	20.7e8	15.0e8	12.4e8	10.5e8
Day 7	CD3 ⁺ (% total cells)	99.5%	99.5%	99.4%	97.6%
Harvest	Fold expansion	20.6	14.9	12.3	10.2
	CD4+/CD8+ Ratio	2.1	1.7	2.0	9.2
	Viability	91.4%	88.6%	92.2%	93.2%


GD2-CAR-T for sarcoma and neuroblastoma

*Gamma-retrovirus vector transduction

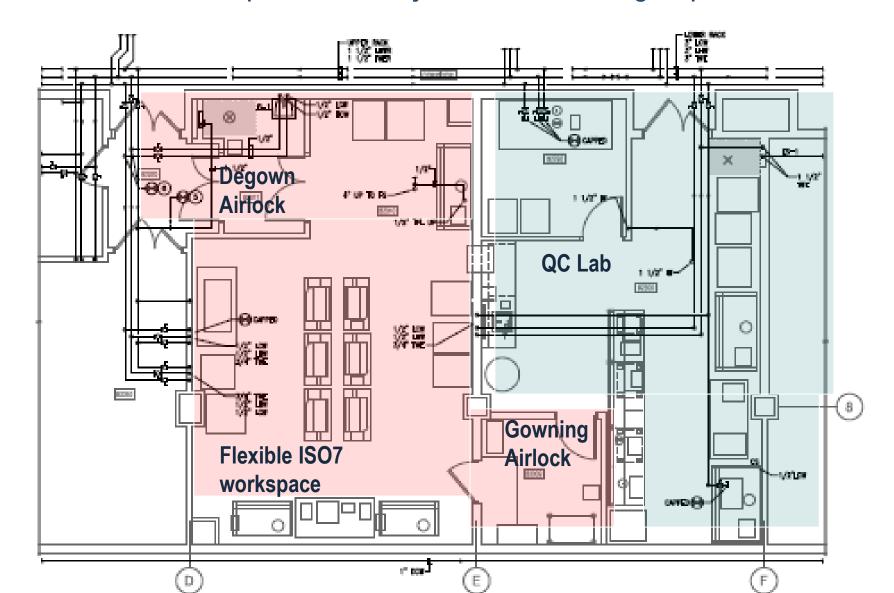
Clinical Trial sponsor:


CTEP/Peds-CITN

Clinical Trial Co-Pls: Crystal Mackall (Stanford) Rosie Kaplan (NCI, CCR)

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

Current NCI/FNLCR lentivirus production platform A scalable 4-plasmid lentivirus production platform has been developed


U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

FNLCR Cell Therapy & Virus Manufacturing Capacity

Product Type	Suite	Status/Capacity
Autologous cell therapy	B2310 Cell Therapy Suite	 Prodigy-based only 2 Prodigy units produce 4/month
Lentivirus vectors	Virus Production Facility (VPF)	 1st cGMP production in Q1 2021 4 campaigns per year (lenti or retro)
Gamma retrovirus vectors	Virus Production Facility (VPF)	 Process development ongoing cGMP capability by Q2 2021 4 campaigns per year (lenti or retro)
Cell therapy or virus vectors	<i>New construction</i> <i>3rd floor ATRF</i>	 3 new suites expected on-line 2022 12 virus campaigns/year Capacity for cell therapy production is product-type dependent (i.e. autologous or allogeneic, manufacturing platform)

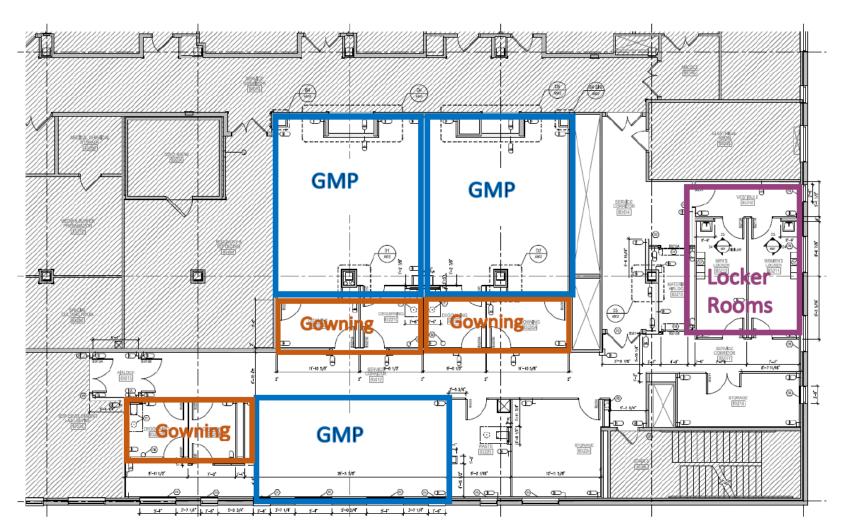
National Institutes of Health Renovations completed for ATRF B2300/B2310 ISO7 production suite, flexible workspace and adjacent QC testing capabilities

19

National Institutes of Health

ATRF B2300/B2310 renovation completed

- Validation ongoing but delayed due to COVID shut-down
- Will be ready for cGMP manufacturing in fall 2020



National Institutes of Health

Beginning Fall 2020: Renovations to ATRF 3rd floor B wing

- Expand flexible cell therapy manufacturing space with 3 cGMP rooms
- Provide cGMP production for transduction vectors: lentivirus, gamma retrovirus, AAV

National Institutes of Health

Timeline for cell therapy and vector production

CELL THERAPY DEVELOPMENT AND IND FILING

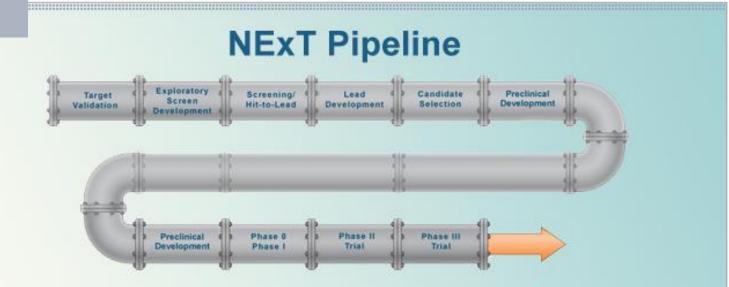
2 months	Project initiation & MTA	
3 months	Tech transfer and assay development	
2-3 months	Pilot production, efficacy confirmation	
2 months	IND filing	
3-6 months	Site activation & patient accrual	
~12-15 months TOTAL		

VECTOR DEVELOPMENT AND MANUFACTURING

2 months	Project initiation & MTA
2-4 months	Identify and procure packaging plasmids
2-3 months	Feasibility (when GOI plasmid, testing protocols provided)
1 month	GMP production run
2-3 months	Testing and release (QC/QA).
9-13 months	TOTAL

National Institutes of Health

Future of Cell Therapy and Vector Production


- > New autologous CAR-T projects take 10-12 months to reach IND.
 - Production platforms other than Prodigy will take additional time to establish
 - Cell therapies other than CAR T will take additional time to establish
- > Site-activation and intitial accrual may take an additional 3-6 months.
- cGMP vector production projects (lenti, retrovirus, AAV) take about 9-12 months to complete development, cGMP manufacturing and product release.
- Gene-editing (e.g. CRISPR/Cas9) technology development for cellbased immunotherapy is being launched in September 2020
 A queue must be established to generate cost-effective manufacturing capabilities.

Extramural innovators can access cell therapy manufacturing (including viral vectors) through the NCI NExT program

About NExT

The mission of the NExT Program is to advance clinical practice and bring improved therapies to patients with cancer by supporting the most promising new drug discovery and development projects.

https://next.cancer.gov

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

ciii ealth

Services for developing small molecules, biologics and cell therapies

National Institutes of Health

Acknowledgements

BDP: George Mitra Doug Gaum Sheryl Ruppel John Roach **Trevor Broadt** Julie Blake Senthil Sivagurunathan Marie Elena Fraley Ramarao Vepachedu Naga Selvaraj Brain Bowser Kevin Urak Vinay Vyas Xiaoyi Yang **Greg Feaga** Alokesh Ghosal Hui Dong Cynthia Ng

NCI/NIH: Jim Doroshow Anthony Welch Jason Yovandich Rachelle Salomon Ray Harris Carrie Laurencot (now at FDA) Nirali Shah Dave Stroncek Steve Highfill Haiying Qin Sandhya Panch

CCR Clinical Trial Co-Pls:

Nirali Shah (NCI) Rosie Kaplan