Identifying New Initiatives for FNL

FNLAC Meeting

June 27, 2022

Sean Hanlon, Ed Harlow, Joe Gray, and Dinah Singer


NCI Vision Statement for FNL

FNLCR is envisioned to function in support of the mission of NCI with three fundamental tasks:

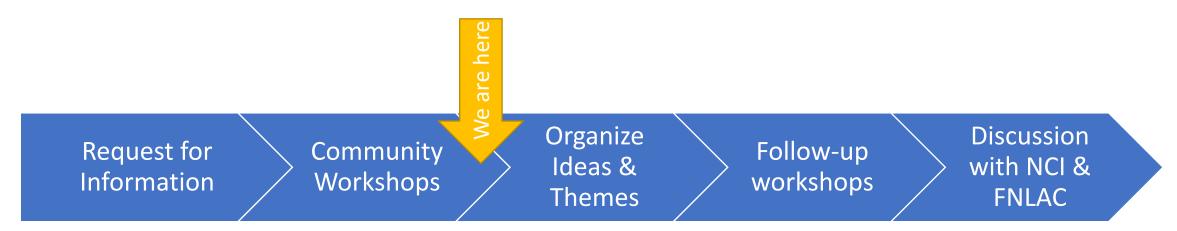
- To function as a nucleus for large-scale projects
- To serve as a hub for technology development
- To sustain the extramural and intramural components of NCI

Soliciting input from the community on FNL priorities

- Input solicited from broader research community on opportunities for FNL large-scale projects and technology development hubs
- Request for Information issued in late 2020 with responses submitted in early 2021
- Series of workshops planned for 2022

FNL Community Workshops

- Gathering input from cancer research
 community on the most important needs
 and promising opportunities in cancer
 research that may benefit from a Frederick
 National Laboratory for Cancer Research
 (FNLCR) coordinated initiative
- Small workshops of **5-8 participants**
- Targeting **broad thinkers** that can consider areas beyond their own research interests
- Each participant invited to share their one best idea for a potential FNLCR project



Important characteristics of FNL projects

- Challenges that are emerging or currently intractable
- Research distinct from what is supported by other NCI programs
- Opportunities that are poised to make progress in 5 years
- Challenges that cannot be addressed by a single lab or small group
- Research that requires centralized coordination
- Research that requires some centralized resource or capability
- Technologies that if made more robust or widely available would have a significant impact on cancer research

FNL Community Workshops: status update

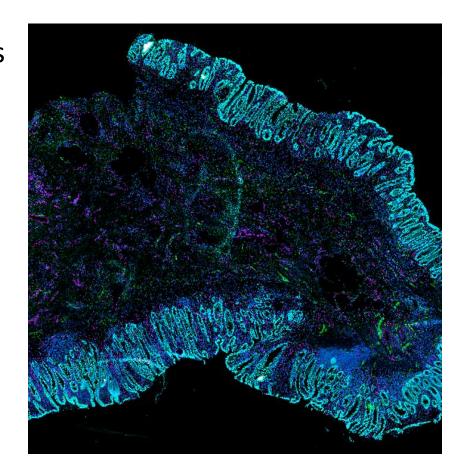
- Held 10 workshops: 8 general sessions and focused sessions on (1)
 Al/Computational & (2) Imaging
- Collected ideas from 58 participants
- Beginning process of organizing and categorizing ideas

Research Project Proposals

- Drug development
 - Understand mutations and variation in the non-coding genome, validate lowfrequency drivers, and understand variants of unknown significance
 - Identify combination therapies to over come resistance using liquid biopsies, highthroughput screens, computational biology, and/or targeting plasticity
 - Understand the complex biological effects of radiation on the tumor, microenvironment, and host
 - Molecular epidemiology to identify additional environmental determinants of cancer
 - Spatial systems biology to characterize and target the TME, identify ancestry-driven differences in tumor immunology, and investigate cellular neighborhoods
 - Develop global maps of protein-protein interactions and protein complexes
 - Understand the role of glycobiology in cancer etiology

Research Project Proposals – Drug Development

- Myc initiative
- PI3K initiative mutant-specific PI3K inhibitors
- Assessing and targeting p53 alterations
- Targeting challenging targets (e.g., fusion proteins, TFs, telomerase, genomic instability)
- Immune targeting of Kras mutants
- Bacterial cancer therapies
- Overcoming the blood brain barrier
- Mapping E3 ligase targets to guide further development molecular glues and PROTACs


Technology / Resource Proposals

- Spatial Omics / Spatial Systems Biology
 - Experimental models
 - Pre-clinical animal model resource
 - Cancer organoids resource including developing organoids that include immune components and vasculature
 - Humanized mouse models resource
 - Microbiome resources including standardized collection and analysis of resident microbiome and standardization of mouse models of the microbiome
 - Resource to produce placebos for randomized interception trials
 - Screening platform for therapeutics and new biology
 - Fully synthetic ORF library collection
 - CAR-T resource facility

Technology / Resource Proposals – Spatial Omics

- Provide wider access to technologies
- Validated reagents (antibodies, etc.) for mouse & humans with a focus on panels most valuable to cancer research
- Platform comparisons
- Continue technology refinement
- Bioprinting and tissue engineering
- Development and standardization of data analysis pipelines
- Assess and address data storage and management requirements
- Establish spatial omics satellite cores adjacent to labs with expertise and technologies to increase access

Next Steps

- Planning a few additional targeted workshops including on mRNA vaccines and population science
- Identify cross-cutting themes that emerged from the workshops and RFI
- Organize focused workshops for in-depth discussion of cross-cutting themes
- Discussion of highest priority ideas with FNLAC and SPL