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NCI-DOE Collaboration
The NCI/DOE Collaborations were formed to jointly accelerate NCI and DOE federal 
missions in precision oncology and high-performance computing (HPC).

The partnership is designed to push the frontiers of high performance computing 
through application to NCI's mission to improve understanding of cancer biology and its 
application to more effective cancer therapies. 
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Mission of the Working Group

• Provide scientific evaluation of programs, projects and activities formed in 
support of or relevant to NCI-DOE collaborations

• Specifically provide suggestions to the three pilot projects on how to optimize 
their impact for both DOE and NCI programs.

• Provide guidance and insights on relevant partnerships with other entities (e.g. 
ATOM)

• Explore the new domains and activities in which collaborations between the 
NCI and DOE would be mutually beneficial and advance the missions of these 
entities  

• The Working Group will advise the FNLAC 
• In accordance with the NCI/DOE MOU, the DOE Secretary, DOE and DOE FACA 

committees may use the public products and public findings in furthering the 
DOE mission



Activities under the DOE-NCI Collaboration
Joint Design of Advanced of Computing Solutions for Cancer 
(JDACS4C)

• Cellular Level Pilot 1: Predictive Models for Pre-clinical 
Screening

• Molecular Level Pilot 2: RAS Biology in Membranes 

• Population Level Pilot 3: Population Information Integration, 
Analysis, and Modeling

• CANDLE (CANcer Distributed Learning Environment): An 
Exascale Computing Project to develop Machine Learning 
framework for Cancer

Accelerating Therapeutics for Opportunities in Medicine 
(ATOM)

Uncertainty
Quantification
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Today’s update
• An update on the three pilots and associated uncertainty 

quantification (the last update to FNLAC was a little over a 
year ago):

• Accomplishments and lessons learned in years 1-3
• The WG views on the aims and direction for years 4-5

• Two notes: 
• Each pilot is really a major collaborative undertaking, exploring 

a very difficult problem, that will require a sustained effort over 
many years.  Calling them major projects would be just as 
appropriate as calling them pilots. 

• Continuation of projects will aid the broader NCI community in 
deriving impact and value from the partnership.



Pilot 1

Predictive 
Models for Pre-

Clinical 
Screening

Described a year ago: 
Aim 1: Develop reliable machine-learning-based predictive 
models of anti-cancer drug response 
Aim 2: Integrate uncertainty quantification and optimal 
experimental design to assert quantitative limits on 
predictions
Aim 3: Develop hybrid predictive models that support the 
graded introduction of mechanistic models into the machine-
learning framework

Within the global aims described a year ago, specific aims for year 4 and 5 are:
1. Advance state-of-the-art machine learning models for PDX and PDO drug  response 

predictions
2. Develop low data learning methods aimed at maximizing the value of high-cost 

experiments
3. Develop methods for Interpretability of deep learning models for hypothesis 

formation and explainability



Pilot 1: Predictive models for pre-clinical screening

Aim 1: Develop reliable machine-learning-based predictive 
models of anti-cancer drug response 
Aim 2: Integrate uncertainty quantification and optimal 
experimental design to assert quantitative limits on 
predictions
Aim 3: Develop hybrid predictive models that support the 
graded introduction of mechanistic models into the machine-
learning framework

Foundation has been established with large, complex and accessible system

On going

Future



Pilot 1

Aim 1: Develop reliable machine-learning-based predictive 
models of anti-cancer drug response 
Aim 2: Integrate uncertainty quantification and optimal 
experimental design to assert quantitative limits on 
predictions
Aim 3: Develop hybrid predictive models that support the 
graded introduction of mechanistic models into the machine-
learning framework

The narrowing and focusing of goals for year 4 and 5 follows from 
accomplishments and lessons learned by the collaboration in years 1-3 and is 
consistent with the advice of the working group.

1. The ultimate limited utility of CL based predictions means moving to PDO 
and PDX models

2. Limited availability of PDO and PDX models means understanding ML and 
UQ in the context of limited statistical samples

3. Main problem is not algorithmic but data.  Formalize definition of 
appropriate (more/better) data for ML (minimum requirements) – describe 
datasets that would be most useful in language that is informative to 
cancer biologists

4. Review transfer learning from CL to PDO to PDX.  How useful?



Pilot 2

RAS Biology in 
Membranes 

Described a year ago:
Aim 1: Develop multiscale modeling capabilities to 
investigate RAS dynamics on cell membranes
Aim 2: Understand how RAS and extended RAS 
complexes are activated and simulate RAS-RAF 
interactions on realistic, lipid-bilayer membranes
Aim 3: Develop machine learning-enabled dynamic 
model validation approach to high-fidelity simulation 

Extended aims for years 4 and 5:
1.  Spatial hierarchical multi-scale modeling

Extend the two-scale simulation approach to a third scale: atomistic resolution
Extend the macroscopic model to allow incorporation of membrane curvature

2.  Understand activation of extended RAS complex
Deeper understanding of the RAS signaling cascade and RAF-RAS interactions 
Extend workflow to enable simultaneous communication across the three scales

3.  Machine-learning enabled dynamic validation approach to high-fidelity simulation
Define ML approach to handle scale transition decisions across three levels



Pilot 2: Ras Biology in Membranes

Described a year ago:
Aim 1: Develop multiscale modeling capabilities to 
investigate RAS dynamics on cell membranes
Aim 2: Understand how RAS and extended RAS 
complexes are activated and simulate RAS-RAF 
interactions on realistic, lipid-bilayer membranes
Aim 3: Develop machine learning-enabled dynamic 
model validation approach to high-fidelity simulation 

Now: 2 levels

Future: 3 levels

Future: deeper
understanding of
RAS signaling
cascade 



Pilot 2 

The aims of Pilot 2 are largely unchanged.  Progression to an atomistic level is 
necessary to start understanding in more detail how RAS4B binds to other 
molecules on the lipid surface, thus starting the signaling cascade.

Experiments on artificial membranes provide data to verify the computational 
models and structural data on various proteins allows the modeling of those 
interactions at the atomistic level.

The computational model pinned in selected cases with these actual 
experiments is filling the gaps that cannot be seen experimentally in the 
interactions of KRAS4B with the lipid membrane and other proteins.



Pilot 2 

The Working Group is impressed with the progress in the two scale 
simulations that have given some insight into the behavior of KRAS4B 
on the membrane

Going to three scales by adding an atomistic simulation should greatly 
expand capabilities.  It is important that the plans be quite detailed and 
clear for the exchange from biology to simulations and back – filling 
gaps in experimental design and vise versa. 

Ab-initio modeling of such a large experimental system will require 
sustained effort to get to the point of learning new biology and new 
potential therapeutic targets



Pilot 3

Precision Oncology 
Surveillance

Described last year:
Aim 1: Information capture of unstructured clinical text using 
Natural Language Processing (NLP) and Deep Learning 
algorithms 
Aim 2: Information integration and analysis to understand 
drivers in patterns of cancer outcomes and predict clinical 
endpoints
Aim 3: Data-driven modeling of patient-specific and 
population level health trajectories

Aim 1: Advanced machine learning for scalable information extraction from 
unstructured clinical reports and medical images.
Aim 2: Scalable and visual analytics to understand the associations of patient 
trajectories and the exposome with patient outcomes and enable better clinical 
trials matching.
Aim 3: Precision data-driven modeling of patient trajectories with a focus on 
cancer recurrence



Pilot 3
Described last year:
Aim 1: Information capture of unstructured clinical text using 
Natural Language Processing (NLP) and Deep Learning 
algorithms 
Aim 2: Information integration and analysis to understand 
drivers in patterns of cancer outcomes and predict clinical 
endpoints
Aim 3: Data-driven modeling of patient-specific and 
population level health trajectories

Present efforts Future expansion



Pilot 3
Described last year:
Aim 1: Information capture of unstructured clinical text using 
Natural Language Processing (NLP) and Deep Learning 
algorithms 
Aim 2: Information integration and analysis to understand 
drivers in patterns of cancer outcomes and predict clinical 
endpoints
Aim 3: Data-driven modeling of patient-specific and 
population level health trajectories

Ultimate goal is VERY ambitious

SEER KNOWLEDGE GRAPH



Pilot 3
Described last year:
Aim 1: Information capture of unstructured clinical text using 
Natural Language Processing (NLP) and Deep Learning 
algorithms 
Aim 2: Information integration and analysis to understand 
drivers in patterns of cancer outcomes and predict clinical 
endpoints
Aim 3: Data-driven modeling of patient-specific and 
population level health trajectories

The pilot has entered a virtuous cycle in which the pilot NLP developments are 
implemented in four registries with the goal of scaling to 35% of the US 
population in the next two years  capture data more efficiently and improve 
accuracy and timeliness by understanding when failures occur

It will include pathology images next.  It may be useful to have competing 
groups to classify synthetic images from the SEER data base. 

In years 4 and 5 it will extend the data with recurrence and biomarkers.  
Ultimate goal may take time to achieve, but products developed in the 
meantime are already improving the utility of the SEER registries.



Pilot 3
Described last year:
Aim 1: Information capture of unstructured clinical text using 
Natural Language Processing (NLP) and Deep Learning 
algorithms 
Aim 2: Information integration and analysis to understand 
drivers in patterns of cancer outcomes and predict clinical 
endpoints
Aim 3: Data-driven modeling of patient-specific and 
population level health trajectories

Implementation of knowledge graph, building on other attributes of data such 
as behavioral, environmental, co-morbidities provides path towards use in 
clinical trial matching and ultimately individualized risk score for cancer 

Some additional directions suggested by the working group:

• Distribute tools and establish collaborations with cancer centers.  Convene 
collaborative community similar to the RAS initiative. 

• Within Aim 1, apply existing and novel deep learning methods through 
CANDLE to pathology and medical images at scale.  It will allow creation of  
knowledgebase with a semantic graph representation of each patient’s care 
trajectory, life trajectory, therapeutic trajectory, and disease trajectory



Pilot 3

Described last year:
Aim 1: Information capture of unstructured clinical text using 
Natural Language Processing (NLP) and Deep Learning 
algorithms 
Aim 2: Information integration and analysis to understand 
drivers in patterns of cancer outcomes and predict clinical 
endpoints
Aim 3: Data-driven modeling of patient-specific and 
population level health trajectories

Within Aim 2, provide a framework and infrastructure for matching 
cancer patients to clinical trials. For this to be feasible, the trial has to 
be itself computable, and the patient phenotype does too. 

Within Aim 3, build a predictive model for recurrence for all cancer 
patients. This is a stretch goal even for a few cancer disease areas. 



Uncertainty Quantification

Cuts across all pilots.  The central questions that uncertainty quantification of deep 
learning implementations needs to answer:

• Uncertainty of individual predictions
• Quality assessment of input data
• Model quality improvements
• Determination of quantity and quality of needed data



Uncertainty Quantification

•      Models make many predictions, only some of which are certain enough to 
be actionable; UQ tells us which ones

•      Input data has varying degrees of errors; UQ allows determining the clean   
subset

•      UQ is essential for determining data modeling uncertainty in situations 
with limited data

•      UQ allows one to choose models that maximize certainty
•      Experiments/data are expensive; UQ allows to choose which data is most   

valuable
•      Deep learning is important for many DOE and NCI projects, the method 

developed  will have wide applicability.



Uncertainty Quantification

The technology driven by the pilots is innovative and interesting (e.g., abstention 
classifiers and the mixture models for heteroscedastic uncertainties). It also appears 
that the UQ effort has had impact by helping cancer researchers think about 
uncertainties.

The UQ plans for the 4th and 5th years are directed at the important issues. Several 
objectives for the coming two years appear especially challenging:
• UQ for transfer learning: This is essentially the application of UQ to extrapolation. Applications to ML 

models with their complex empirical model structure seems particularly challenging.
• Small data: Dealing with UQ in the small-data limit is greatly enhanced by the availability of uncertainty 

estimates for the data, but this is apparently not always available. in these applications. There may be 
fundamental limits to what can be done without it.

• Efficient abstention: The observed inefficiency in abstention may not be the fault of the 
formulation/algorithms, but rather the limitations of the available data. Again, there may be fundamental 
limits to what can be done.



Uncertainty Quantification
Two suggestions of the WG that may be helpful to the UQ team: 

• In the application to multi-scale simulations in pilot 2, if they have not already, the 
team may want to consider some of the ideas underlying Bayesian optimal 
experimental design, as it seems that the challenges of healing coarse simulations, 
and balancing exploration and exploitation may have similarities with the 
experimental design problem. 

• It seems that the proposed efforts could benefit from developments in the CS 
community around reliability of machine learning models, and related issues. 
Tracking these developments would be helpful.



Conclusions

• Overall, the three pilots have developed impressively over the past three years. 
• Each pilot is helping define the quality and type of data that are necessary to make progress  
• Important work has been done across the pilots on uncertainty quantification.  This is 

essential for the utility of knowledge extracted from data and for the predictive models in all 
pilots.

• We have learned that the problems are, if anything, more difficult and challenging than 
initially imagined.

• There is a sharpening and focusing of the aims for years 4 and 5 following the lessons learned 
from the existing pilots.

• While I have described the progress mostly through an NCI perspective, the tools and 
methodologies developed in the pilots have broad applicability to many machine learning 
problems.  Beyond the developed methodologies, the scale of the problems tackled by the 
pilots is helping DOE define what architectures are  needed at the exascale. 



The future: my take
• It is important for DOE, NCI and their respective communities to understand how the 

program evolves beyond the next two years.
• Before the end of Year 4 and 5, NCI and DOE should have a deep technical review of each 

pilot, in greater depth than is possible with the Working Group and try to determine what 
end-point is possible in each of the pilots.  They are, after all, pilots and pilots should end and 
should transition to programs. 

• Armed with the knowledge acquired in the pilots, NCI and the community should plan on 
how broad and deep the application of machine learning and deep neural networks to the 
many cancer problems.  The pilots are already quite general, but the tools developed in the 
pilots are potentially of much broader utility.

• Now that we have these pilot projects for 3 years, it is important for the agencies to take 
advantage of this opportunity and seriously explore potential benefits of a sustained 
partnership – delivering computing advances for DOE and developing cutting-edge 
techniques for cancer research.
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