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Adaptive resolution MD/CGMD coupled 
with phase field

Connecting MD and CGMD 
with continuum-scale phase 
field models will access 
biologically relevant time 
and length scales

• Model complex (many lipid) 
bilayer with phase field to 
capture structure and topology

• Model Ras on membrane 
using full atomistic resolution

• Use CGMD as ”glue” to 
connect different models



Simulation of full system will incorporate a 
large number of smaller simulations

O(103) 100,000-atom simulations

• 10-100 µm lipid patches
• Dynamic membrane
• Hundreds of Ras

proteins
• Mutant and wild-type
• Many conformations
• Many environments

Investigate diffusion and 
aggregation in of Ras in 
context of specific 
membrane properties



Lipid content: RAS/HVR binding by SPR, alpha 
assays in nanodiscs, liposomes, imaging in GVUs, 
lipidomics, SANS (possibly with contrast variation)

RAS/HVR mobility & dynamics: single particle 
tracking, FCS, CG simulations of farnesylated
HVR and RAS on nanodiscs and membranes, 
use to constrain phase field coupling 

RAF-membrane affinity: SPR in liposomes, 
biophysical measurements, MD 
simulations to identify regions of interest 
that interact with membrane

RAS/HVR-membrane binding: SPR in liposomes, 
biophysical measurements, SANS (with contrast 
variation), AA and free-energy calculations of RAS/HVR 
binding to constrain CG parameters, free energies to 
inform phase field

HVR structure/dynamics: crystallization, 
CD, MD of HVR in multi-component lipid 
platform to inform mobility in phase field 
model

RAS activity & structure: GTPase, GTP off-rate, 
crystallization, NMR, cryo-EM?, SANS, AA MD 
simulations constrain CG parameters 

RAS-RBD structure: crystallization, NMR, AA 
simulations to constrain CG parameters

RBD-CRD and CRAF structure: crystallization, NMR, 
cryo-EM, CG simulations validated against AA 
simulations

RAS-RBD binding: SPR, ITC, alpha assays in 
nanodiscs, TIRF, SANS (possibly with contrast 
variation), compare with AA simulations and 
constrain CG simualtions

RAF activation: dimerization, phosphorylation state(s), long time-scale CG  simulations 
and kinetic estimation, multi-scale simulations multi-scale simulations of RAS/RAF 
dynamics on membrane

RAS/HVR multimeric state: BRET, 
step photobleaching, PALM, AA and 
CG MD of KRAS/HV    R on 
nanodisc and  multi-component lipid 
platform

Experimental data to inform modelSimulations to build model

Farnesyl dynamics: solid state NMR, 
AA and CG simulations of farnesyl in 
membranes and  lipid bilayers 
informs phase field model

Lipid domains: Confocal microscopy 
RAS/HVR localization in GUVs, Calibrate 
coarse-grained (CG)  simulations with all-
atom (AA) Simulations, Calculate free 
energies of domains

Close collaboration of experimentalists and 
theorists to build predictive model
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Simulations of KRAS have started in more 
biologically relevant lipid environments

Completed coarse-grained (CG) simulations of 
• Average mammalian plasma membrane with 63 distinct 

lipid types
• Working on improving CG parameters for specific lipid 

types to be consistent with all-atom (AA) simulations of 
lipids

• Investigating “simple” average plasma membrane [only 
18 lipid types]

• Looking into tissue specific lipid compositions

Initial CGMD of KRAS proteins in complex 
human average plasma membrane 
• 64 Kras4b in 70 nm x 70 nm membrane
• HVR in alpha helix conformation
• Inserted in inner plasma membrane leaflet

Tail unsaturationHeadgroups

Distribution of lipids in 
average plasma membrane



KRAS4b in mammalian plasma membrane

6

• 20,000 lipids (70x70 nm)
• 40 µs pre-equilibration
• 64 Ras proteins readily 

cluster 
• Rapidly associate with and 

aggregate charged

Helgi Ingólfsson, LLNL

lipids in the 
membrane



CANDLE: Cancer Distributed Learning 
Environment

RAS 
Biology

Treatment 
Strategy

Drug 
Response

CANDLE

Unsupervised learning 
inside multiscale molecular 
simulations steered by 
semi-supervised learning 

Supervised learning 
augmented by stochastic 
pathway modeling and 
experimental design

Semi-supervised learning, 
scalable data analysis and 

agent based simulations 
on population scale data

Building a machine learning 
framework for the NCI-DOE pilots



Machine learning enables a new dynamic 
validation approach to high-fidelity 
simulation

Hypothesis
generation

Machine learning 
systems

HPC-enabled 
simulation

Observed 
molecular 
properties

Machine learning systems uncover 
relationships between computational 
models and experimental data

This “active learning” approach can 
be used to optimize solutions with 
significant reduction in compute 
requirements
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Project will build understanding on 
computational advances
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New computational capability will be broadly 
applicable to NCI and DOE missions
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