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The activation cycle of mammalian Raf protein kinases (simplified overview)
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2. When activated small G-proleins (Ras-
GTP) and appropriate lipids are present,
Raf will transiocate to the memirane, and
the internal autoinhibitory interactions will be
disrupted But the kinase is not yet active
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Termination of signaling

1. In the absence of a cellular
stimulus, most Raf molecules
are found in the cytoplasm, in
a monomeric and closed”
(autoinkibited) state
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3. The .open” Raf kinase domains readily
form homo- or heterodimers (with KSRJ
while still bound to the memirane This
will force their activation loops to adopt a
partially active conformation via allostery.
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6 ERKT and 2 will phosphorylate
target substrates of the pathway
(including nuclear proteins, such
as transcription factors). These
are responsitile for the cell-cycle
promoting effect of Raf pathway:
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Feed-back
phosphorylation

(partially
active)

Phosphorylation of effector proteins

7. KSR can recruit ERK1 and ERK2 in order to induce & number of
inhibitory phosphorylations in the hinge regions of Raf and KSR. This
feed-back will lead to the disruption of the dimers, force dissociation
from the memirane and terminate signaling (though several important
details are stil unknown). In the cytoplasm, phosphatases remove all
stimulatory phoshpates, leading to inactivation and domain closure.
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4. The Raf-Raf {or KSR-Raf} dimers will phosphorylate
each other, leading to fully active protein kinases. Other
protein kinases such as PAKT (which is iself activated by
GTP-bound Cdc42) can also provide help at this step, with
additional phiosphorylation events near the M-terminal end
of the Kinase domain The phosphorylated activation loops
now permanently lock the catalytic site into an active
conformation until dephosphorylated.

MAPK cascade activation

MAPK activation
(in the cytoplasm)

WMAPZK activation
(atthe membrane)

5. Mow that Raf is fully active, i can phosphonyiate its dedicated
substrates, the MKK1 and MKK2 protein kinases. (QOn the other
hand, KSR is a rather poor enzyme on MKKs.) Once the MKKs
are phosphorylated, they become active as well Freely diffusing
in the cytoplasm  the main substrate of MKK{ and MKK2 are
ERKT and ERKZ. conmpleting the MAPK cascade.
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Molecular dynamics NMR analysis with 13C-lle labeling
Gorfe et al., 2007 Mazhab-Jafari et al., 2015

* Objectives:

— Determine the structural information of KRAS on a membrane
(Nanodisc)

— Evaluate the effect of nucleotide state, effector interaction and lipid
composition on the structure of KRAS

— Establish a functional assay of KRAS on the membrane by measuring
RAF activation 5
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« Use Analytical Ultracentrifugation to determine maximal number
of KRAS molecules that can fit on one face of a Nanodisc

— Investigate lipid requirements for KRAS —KRAS interactions on a
Nanodiscs

— Application for KRAS-effector stoichiometry measurement on Nanodiscs

 Maximum stoichiometry predicted to be 4 KRAS molecules per
face.

— Radius of a Nanodisc is 3.75nm
— Area of Nanodisc is 44nm

— Radius of KRAS4b ~1.8nm

— Area of KRAS4b ~10nm
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Sligar Lab — University of lllinois Urbana-Champaign
— Analysis of lipid dependence in KRAS-FME binding to Nanodiscs
« Groves Lab — UC Berkeley
— PIP2 may be required for KRAS-FME dimerization
- Mattos Lab — Northeastern University
— KRAS-FME-GppNHp for complex with CaM
- UMB
— NMR analysis of CaM-KRAS complex and KRAS Cys185 tethering compounds
« Oak Ridge National Laboratory
— Small angle neutron scattering of KRAS-FME on Nanodiscs
— Molecular modeling of KRAS-FME on a membrane
« DOE Pilot 2

— Preliminary discussions to support modeling data with structural/biophysical
measurements of KRAS-FME on membrane
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* Develop imaging methods to identify KRAS complexes in c

* Develop screens for disrupting complexes
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Ras-GTP dimers activate the Mitogen-Activated Protein
Kinase (MAPK) pathway

Xiaolin Nan™™<", Tanja M. Tal'rl?ih\ey‘u, Eric A. Collisson™??, Li-Jung Lin“*, Cameron Pitt?, Jacqueline Galeas®,
Sophia Lewis®, Joe W. Glay""'"" , Frank McCormick®?, and Steven Chu®'

Contributed by Steven Chu, May 16, 2015 (sent for review September 3, 2014; reviewed by Guowei Fang, Tyler Jacks, Mark Phillips, and Neal Rosen)


Presenter
Presentation Notes
We will use PALM imaging, and other high resolution techniques to verify existence of KRAS protein complexes in cells and to probe the nature of KRAS dimerization. These approaches will validate biochemical analysis of KRAS effector complexes (eg KRAS-RAF compl;exes. Etc). Furthermore,  disrupting signaling complexes consisting of dimers or higher structure presents extremely attractive new opportunities for drug discovery. Screens for compounds that disrupt Ras dimers (or Raf dimers) or other aspects of Ras superstructures are technically feasible and could be initiated quickly at Frederick 
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Information extracted
from individual
trajectories

s

Three state mobility model

FasT | = [ meDIUM | =

Probability of direct transition from slow
Ty =04ds to fast is low.

D, =0.026 ym’fs

F3 =19.7%

P is the probability of
k the transition from one
state to another per

second

F,=60.3%

22,325 trajectories and average trajectory length 12
frames.
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Goal: Image full-length KRAS in a native membrane-bound environment
 KRAS is too small to be targeted by cryo-EM directly.

« Create a large enough complex with relevant RAS binding proteins and/or Fab
fragments and bind to a nanodisc.

» Generated several mAb against KRAS and are characterizing them with regards to
electron microscopy

« Working on creating stable KRAS complexes with some of its binding partners

3D reconstruction of intact human integrin (200 kDa) in a nanodisc
from negative stained data.

Choi WS1, Rice WJ, Stokes DL, Coller BS (2013) Blood 122:4165-4171
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* Information:

Farnesylated — Functional assay of KRAS on the membrane
KRAS ‘:i;:?“ by measuring RAF activation (2016)
nr«g — Determine the structure of KRAS on a

Full-length CRAF 2. membrane (nanodisc or alternate)

— Evaluate the effect of nucleotide state, CRAF-
RBD and CRAF-RBD-CRD interaction and
lipid composition on signaling

— Identify additional components

— Model tool compounds that perturb activation
to define protein-protein interaction

Anti-pMEK acceptor
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30% of cancers have mutated RAS

~1M deaths/year

o
L
4
Molecular Dynamics
Simulation
Modeling RAS biology
ID targets
Current therapies ineffective against New inhibitors

RAS-driven cancer

Facilitate discovery and development
of novel therapeutics
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