

Evaluation of the National Cancer Institute (NCI) Specialized Programs of Research Excellence (SPORE)

NCI Clinical Trials and Translational Research Advisory Committee November 30, 2012 Judith Hautala, Oren Grad, Brian Zuckerman

Analysis Methodology

- Sample set of 55 SPORE awards
 - Active any time since 2004
 - Completed at least one 5-year award cycle
- Organ site distribution
 - Brain–4
 - Breast—8
 - Gastrointestinal-5
 - Genitourinary—4
 - Head and Neck—4

- Hematological-5
- Lung—7
- Ovarian-4
- Prostate—11
- Skin—3

- Data sources
 - Applications/progress reports for most recently completed 5-year award cycle
 - Individual discussions with SPORE PIs
 - Independent analysis of major advances

Evaluation Highlights

- Major Conclusions
- SPORE-Influenced Major Advances
- Clinical Trials
- Collaborations
- Career Development Program
- Developmental Research Program
- Flexibility Option

Major Conclusions

- Clear focus on early translation
- Award-related constraints to translational progress
- Success in reaching a human endpoint
- Distinct niches for SPORE research
- Key SPORE roles in building capacity for translational research

Synthesis of evidence gathered throughout the evaluation from multiple data sources

Clear Focus on Early Translation

96% of projects had a defined intervention or biomarker test development objective

Clear Focus on Early Translation

80% of intervention projects propose late-stage development activities

# of Projects	MOA ¹ Only	ldentify Target	Confirm Target	Develop Intervention	Clinically Test Intervention
11					
6					
3					
3					
2					
1					
2					
8					
6					
6					
8					
6					
16					
45					
17					

¹ Mechanism of Action

Clear Focus on Early Translation

90% of biomarker projects propose to identify or confirm a biomarker

# of Projects	MOA ¹ Only	ldentify Biomarker	Confirm Biomarker	Develop Biomarker Test	Human Testing
4					
40					
17					
2					
3					
6					
2					
5					
10					
1					
6					
1					
4					

¹ Mechanism of Action

Award-Related Constraints to Translational Progress

- Primary constraint is financial
 - \$200-400K annual total cost per project insufficient for most trials
 - Shortfall even greater if clinical material must be prepared
 - Non-SPORE funding required for most clinical trials and product manufacturing
 - Restricts projects to those attractive to industry, foundations, or other funders
 - Often delays progress
- Secondary constraint is time
 - Five years very short for true "bench to bedside" conversion
 - Favors projects already well advanced in development
 - May restrict pursuit of innovative, high risk ideas if can't use subsequent award cycle to conduct human testing

Success in Reaching a Human Endpoint

93% of projects succeeded in reaching a human endpoint

Distinct Niches for SPORE Research

• Complex or risky development projects

- Collaborative, multidisciplinary research environment encourages development of innovative ideas and approaches to difficult problems
- Pilot projects under Developmental Research and Career Development Programs provide "proof of concept" testing for new ideas
- Creating community of translational researchers in a disease
 - Provides basic scientists avenue for moving discoveries into the clinic
 - Allows clinicians to clinically test recent scientific advances
 - Developmental Research and Career Development awards integrate new investigators into the network of research in a disease area
- Collaborative projects with industry
 - SPORE contributions: expertise, research tools, specimen resources, access to patients
 - Industry contributions: funding, drugs, drug/device development expertise

Key SPORE Roles in Building Capacity for Translational Research

- Within host institutions
 - Builds translational research core infrastructure around a specific disease (expertise, equipment, specimen services)
 - Raises profile of translational research, enhancing perceived value in academic setting
 - Facilitates collaborations and outside funding
- Within disease area
 - Creates a national community of researchers through meetings, conference calls, and research collaborations
 - Research collaborations enable clinical trials, tissue sample collection, and epidemiology studies
 - Catalyzes formation of consortia for the conduct of randomized, early phase trials

SPORE-Influenced Major Advances

- A total of 79 major advances identified
 - 24 accepted into clinical practice
 - 36 in late-phase human testing
 - 19 with broad clinical potential
- NCI selected 14 advances for further analysis
 - Discoveries and developmental steps underlying the advance
 - Role of SPORE-associated research in those discoveries and developmental steps

Selected Advances

Accepted into Clinical Practice

- Enzalutamide (MDV3100) for Late-Stage Prostate Cancer
- Novel Agents and Regimens for Multiple Myeloma
- Contemporary Partin Tables/Kattan Nomograms—Tools for Management of Prostate Cancer
- Diagnostic Test for EML4-ALK Translocation in Non-Small Cell Lung Cancer (NSCLC) Patients
- Predictive Assay for Lung Cancer Response to EGFR Tyrosine Kinase Inhibitors
- Chromosomal 1p/19q Deletion as an Oligodendroglioma Prognostic/Predictive Marker
- BRAF Mutation Detection and Prognostic Value in Papillary Thyroid Cancer
- Screening and Monitoring in Endometrial Cancer and Hereditary Non-Polyposis Colorectal Cancer (HNPCC)/Lynch Syndrome

Selected Advances (continued)

Late-Phase Human Testing

- Difluoromethylornithine (DFMO) and Sulindac for Prevention of Colorectal Cancer
- Heat Shock Protein Peptide Complex (HSPPC) 96 Vaccine for Brain Cancer
- Rindopepimut (CDX-110) Vaccine for EGFR Variant III (EGFRvIII)-Expressing Glioblastoma
- Transmembrane Protease, Serine 2 (TMPRSS2) Gene Fusions as Prostate Cancer Detection and Risk Markers
- Broad Clinical Potential
 - Sensitivity and Resistance to EGFR Tyrosine Kinase Inhibitors in Lung Cancer
 - Risk Factors and Disease Subtypes in Breast Cancer

Enzalutamide (MDV 3100) for Late-Stage Prostate Cancer

Key findings

- Castration-resistant prostate cancer xenografts overexpress functional androgen receptor (AR)
- Increased AR levels confer resistance to anti-androgens by amplifying physiologic response to low levels of androgen
- Increased AR levels convert prostate cancer from hormone-sensitive to hormonerefractory phenotype providing a functional AR ligand-binding domain is retained
- SPORE role (UCLA/MSKCC)
 - Novel AR antagonists with little agonist activity developed under UCLA SPORE Career Development Award
 - Phase I/II clinical trial of lead candidate MDV-3100 carried out through DoD Prostate Cancer Program Clinical Research Consortium with partial MSKCC SPORE support
 - MSKCC SPORE supported preclinical development and phase I trial of further-refined AR antagonist, ARN-509
- Current status
 - Enzalutamide (MDV-3100) FDA approved for metastatic castration-resistant prostate cancer
 - ARN-509 in phase I/II clinical trial

Chromosomal 1p/19q Deletion as an Oligodendroglioma Prognostic/Predictive Marker

- Key findings
 - Strong association between tumor 1p/19q deletions and chemosensitivity, recurrence-free survival and overall survival in anaplastic oligodendroglioma case series
 - Finding of significant association between 1p/19q deletions and prolonged overall survival extended to low-grade oligodendrogliomas
 - Robust clinical trial evidence from RTOG 9402 for association between 1p/19q deletion and chemosensitivity and survival in anaplastic oligodendroglioma
- SPORE role (Mayo)
 - Identification of an unbalanced, whole-arm translocation [t(1;19)(q10;p10)] as likely mechanism for combined deletion of 1p and 19q
- Current status
 - Predictive value of 1p/19q deletions for likely benefit of chemotherapy in patients with low-grade oligodendrogliomas noted in current NCCN Guidelines

Rindopepimut (CDX-110) Vaccine for EGFRvIII-Expressing Glioblastoma

• Key findings

- Elucidation of role of EGFR amplification and EGFR genetic variants in human gliomas, identification of EGFRvIII as the most common variant
- Development of tumor-specific monoclonal antibodies against EGFRvIII
- Demonstration of efficacy of EGFRvIII peptide vaccination in syngeneic tumor models
- SPORE role (Duke, UCSF and UAB)
 - Duke led phase I and phase II clinical trials
 - Duke, UCSF and UAB participating in registration trials sponsored by Celldex in front-line and recurrent glioblastoma
- Current status
 - Phase II and phase III (registration) trials are underway

Sensitivity and Resistance to EGFR Tyrosine Kinase Inhibitors in Lung Cancer

- Key findings
 - Association of EGFR gene mutations with response to gefitinib and erlotinib
 - Association of secondary EGFR point mutation (T790M) with emergence of resistance to gefitinib and erlotinib
- SPORE role (DF/HCC)
 - MGH/DFCI work on EGFR gene mutations and gefitinib sensitivity
 - DFCI work on the association of the T790M mutation with gefitinib resistance
- Current status
 - Extensive body of ongoing research exploring genomic and other determinants of sensitivity and resistance to EGFR tyrosine kinase inhibitors
 - NCCN guidelines for NSCLC recommend adenocarcinoma EGFR mutation testing
 - Several laboratory-developed EGFR mutant tests are available as commercial or hospital lab services

Percentage of Research Projects with One or More Clinical Trials

Phase III Trials Based on SPORE Project Results

- Eflornithine and Sulindac to prevent recurrence of highrisk adenomas and second primary colorectal cancers
 - SWOG and Cancer Prevention Pharmaceuticals, Inc.
 - Arizona GI SPORE
- Brentuximab for Hodgkin's lymphoma and T-cell lymphoma
 - Seattle Genetics
 - City of Hope Lymphoma SPORE
- Sorafenib plus carboplatin and taxol for metastatic melanoma
 - ECOG and SWOG
 - Wistar Skin SPORE

SPORE External Collaborations

1022 Documented Collaborations

Career Development Awardee Success

- 38% received subsequent NIH research funding
- 39% received promotions
- 71% are authors on a SPORE publication
 45% have at least one first-authored SPORE publication
- 14% are authors on 6 to 10 SPORE publications
- 15% are authors on >15 SPORE publications
 - 25 Career Development Program awardees with >30
 SPORE publications

Developmental Research Project Success

- 1,618 projects funded over lifetime of awards
- 136 projects promoted to SPORE research projects
 - Represents ~20% of all research projects conducted over lifetime of these SPORE awards
- 419 projects (27%) received non-SPORE follow-on funding including 248 NIH awards

Utilization and Value of the Flexibility Option

- 51% of SPORE awards utilized the flexibility option to terminate and initiate projects
 - 13% of all research projects originally proposed by the 55 awards replaced with new projects
- Flexibility option praised by SPORE PIs as an effective management tool
 - Allows continuing focus on the most promising translational opportunities
 - Keeps investigators "on their toes" and focused on making translational progress

