NCI Symptom Management and Quality of Life Steering **Committee Clinical Trials Planning Meeting on Chemotherapy Induced Peripheral Neuropathy**

Charles Loprinzi, MD cloprinzi@mayo.edu

Topics

- Introductory comments
- A picture of the problem
- Prevention of CIPN-story for a sample study
- Summary statements
- Discussion

Chemotherapy-Induced Peripheral Neuropathy Major oncologic problem Common chemotherapy dose limiting toxicity

Affects life quality

 Promising preliminary results regarding effective prevention and treatment of this problem

Meeting Data

March 23, 2009

- Approximately 100 participants
- Thought-provoking presentations/discussion
- Report provided
- Informal reviews/remarks

Topics

- Introductory comments
- A picture of the problem
- Prevention of CIPN-rationale for 2 sample studies
- Summary statements
- Discussion

Abnormal Innervation following Chemotherapy

Normal palm

Site A 20x magnification

Meissner's Corpuscles from finger tip

Normal Meissner's Corpuscles

Abnormal Meissner's Corpuscles

Measurement issues

- Multiple proposed tools
- Work is needed to fine tune means to delineate the fine aspects of CIPN
 - Different symptoms
 - Differences between drugs

Topics

- Introductory comments
- A picture of the problem
- Prevention of CIPN-story for a sample study
- Summary statements
- Discussion

Intravenous Calcium and Magnesium for Oxaliplatin-Induced Sensory Neurotoxicity (N04C7)

DA Nikcevich, A Grothey, JA Sloan, JW Kugler, PT Silberstein, T Dentchev, DB Wender, PJ Novotny, HE Windschitl, CL Loprinzi

For the North Central Cancer Treatment Group

J Clin Oncol 2008; May 20 suppl (abstract 4009)

Background

- It was proposed that CaMg would stabilize nerve membranes and prevent the accumulation of oxaliplatin in DRG
- In a retrospective, non-randomized study, intravenous administration of calcium and magnesium salts (CaMg) was associated with reduced oxaliplatin-induced PSN (Gamelin: Clin Cancer Res, 2004)

N04C7 Cancer Control Phase III Trial – Study Design

MAYO CLINIC

N04C7 Cancer Control Phase III Trial

Study Stopped Early
102 pts/300 planned

Primary Endpoint Grade 2+ sNT (CTCAE Scale)

Neurotoxicity
gradeCaMg
n=50Placebo
n=52PGrade 2+22%41%0.038

Time to Grade 2+ sNT (CTC scale)

CP1347

Concept Trial Story

- Stop and go oxaliplatin question
- CaMg vs not question
- •Slower accrual than desired
- •Stop CaMg vs placebo part....all to get CaMg
- •Data management committee....

Hochster HS, Grothey A, Childs BH. Use of calcium and magnesium salts to reduce oxaliplatin-related neurotoxicity. Journal of Clinical Oncology 2007;25(25):4028-4029

FOLFOX R* CaMg – 2 doses Placebo – 2 doses

Other Promising Appearing Agents

- Glutathione
- Alpha lipoic acid/ thiotic acid
- Acetyl-L-carnitine
- Duloxetine/Cymbalta
- Baclofen/amitriptyline/ketamine

Topics

- Introductory comments
- A picture of the problem
- Prevention of CIPN-story for a sample study
- Summary statements
- Discussion

Summary statements

- CIPN is a major clinical problem
- Chemotherapy can cause structural nerve damage
- There is sufficient rationale for conducting high quality clinical trials

Summary statements

Efforts are needed to

- better understand genetic variations that will predict for CIPN
- better define CIPN targets and mechanism based therapies to prevent and/or treat CIPN

 There is a need for more animal model experiments to help direct clinical trial options

Summary statements

- I, even as a conservative investigator, firmly believe that positive clinical trials, with clinically significant results, will be forthcoming within the next few years
- More mechanism based research will improve efforts to define effective therapies

Topics

- Introductory comments
- A picture of the problem
- Prevention of CIPN-rationale for 2 sample studies
- Summary statements
- Discussion

The mayo clinic

Prevention of CIPN

Acetyl L-Carnitine (ALC)

Neuropathy results from disruption of mitochondrial DNA synthesis in nerve cells.

Mitochondrial metabolism in the neurons is decreased and the cells' long peripheral axons die back, causing pain, tingling, and numbness

JD MAYO CI

Prevention of paclitaxel-evoked painful peripheral neuropathy by acetyl-L-carnitine

Withdrawal responses from hind paws Normal rats rarely withdraw from the 4 g stimulus; increased responding after paclitaxel treatment is indicative of mechanoallodynia.

Axonal Mitochondria

Atypical and normal mitochondria in C-fibers (A) and A-fibers (B).
Swollen and vacuolated mitochondria shown at arrows; barred arrows point to normal mitochondria.

•A mixture of normal and swollen and vacuolated mitochondria were often found within the same axon.

•These examples are from a paclitaxel-treated rat that received ALCAR injections.

S0715: Randomized Placebo-Controlled Trial Of Acetyl L-Carnitine For The Prevention Of Taxane Induced Neuropathy ____

History of stage I, II, or IIIA, About to initiate taxane-based chemotherapy

- Paclitaxel at 175 mg/m2 QOWx 4
- Paclitaxel at 80 mg/m2 x 12 w
- TAC (docetaxel 75 mg/m2) q3weeks x 6
- TC

(N = 190/arm)

Follow-up: 12 weeks, 24 weeks, 36 weeks, 1 year Main Outcome: Change in Neurotaxane subscale of the FACT-TAX Secondary: CTC; Fatigue; NGF; Dose/Compliance

The mayo clinic

Bayer: Phase II Randomized Placebo-Controlled Trial Of Acetyl L-Carnitine For The Prevention Of Sagopilone Induced Neuropathy

Prostate or Ovarian Cancer Grade 0 CTC PN About to initiate Sagopilone on efficacy trial

(140)

Follow-up: 6 cycles Main Outcome: CTCAE PN Grade Secondary Outcomes- treatment discontinuation; incidence of grade 3/4

Prevention of CIPN

• Alpha-Lipoic Acid / Thiotic Acid

Alpha-Lipoic Acid / Thiotic Acid

- A potent lipophilic antioxidant
- Oxidative stress implicated in pathogenesis of diabetic PN
- 7 RCTs trials of thioctic acid in diabetic PN completed
- Meta-analysis conclusions

TMAYO CLINIC

- Short-term treatment using IV thioctic acid 600 mg/day reduces symptoms of diabetic PN
- Improvement of neuropathic deficits
- Oral treatment for 4-7 m. reduces neuropathic deficits
- Improve cardiac autonomic neuropathy
- Studies revealed a favorable safety profile

MDACC: Prevention of Cisplatin or Oxaliplatininduced PN with Alpha Lipoic Acid: A Placebo-Controlled Phase III Trial

Scheduled to receive platinum No clinical neuropathy No neurotoxic chemo for 6 mos prior Stratified prior platinum therapy

(N = 244 pts)

Follow-up: 6-8; 12; 24; 36; 48 Main Outcome: Severity and frequency of PN; FACT-GOG-NTX Secondary: functional tests, chemotherapy courses/doses,

The Mayo Clinic

Prevention of CIPN-Glutathione

Glutathione

- Tripeptide consisting of 3 amino acids: glutamyl-cysteinyl-glycine
- Naturally occurring compound
- Felt to be nontoxic
- High affinity for heavy metals

Glutathione S

transferase

Sulfur substituted glutathione

 There are no known human drug interactions of concern

 Administered IV, IM, or by inhalation

 Initially thought to be able to prevent cisplatin-induced nephrotoxicity

 In animal studies utilizing cisplatin, GSH did decrease nephrotoxicity and neurotoxicity

 Some evidence that GSH decreases cisplatin-induced nephrotoxicity in humans

 Some preliminary clinical trials, designed to look at nephrotoxicity, revealed a lower than expected incidence of neurotoxicity

Platinum neurotoxicity

From accumulation of platinum in dorsal room ganglia

- Decreases the accumulation of platinum in dorsal root ganglia
- Regulates calcium channel kinetics
- This might be responsible for how it helps to prevent neurotoxicity
- It may also affect other ion channel pathways

Randomized Glutathione Trials

Glutathione for Advanced Gastric Cancer/CDDP

	GSH	Placebo
	n=25	n=25
Response rates		
Complete response	20%	12%
Partial response	56%	40%
Overall response	76%	52%
Median overall survival	14 mo	10 mo
Neuropathy		
Week 9	0%	66%
Week 15	17%	88%

Cascinu^cet al: J Clin Onc 13(1):26, 1995

Glutathione for Oxaliplatin/Advanced Colorectal Cancer (1)

	Glutathione n=26	Placebo n=26
Therapy administered		
Total cycles	175 (median – 8)	172
Dose intensity	39.2 mg/m²/wk	38.8 mg/m²/wk
Median total dose	782 mg	783 mg

Cascinu et al: J Clin Onc 20(16):3478, 2002

Glutathione for Oxaliplatin/Advanced Colorectal Cancer (2)

	Glutathione n=26	Placebo n=26
Antitumor activity		
Partial response	27%	23%
Median progression- free survival	7 mo	7 mo
Median overall survival	16 mo	17 mo

Cascinu et al

Glutathione for Oxaliplatin/Advanced Colorectal Cancer (3)

	Glutathione n=26	Placebo n=26	P
Neuropathy			
After 4 cycles			
Grade I-II	27%	42%	
After 8 cycles			
Any	43%	79%	0.04
Grade II-IV	10%	58%	0.003
Grade III-IV	0%	26%	0.01
12 cycles			
Grade II-IV	30%	100%	0.004

Cascinu et al

Glutathione for Advanced Ovarian Cancer/CDDP (1)

	Glutathione n=74	Placebo n=77	P
Treatment received			
Received 6 cycles	58%	39%	0.04
Received 6 cycles at 100 mg/m ²	23%	15%	
Mean no. of full dose courses	3.61	3.14	0.14
Mean total no. of course received	4.80	4.38	0.19
Mean total dose	440 mg/m ²	441 mg/m ²	0.13
Smyth et al: Ann Onc 8(9):5	69, 1997		

Glutathione for Advanced Ovarian Cancer/CDDP (2)

	Glutathione n=74	Placebo n=77	P
Response rates			
Overall response rate	73%	62%	0.25
Complete response via second look laparotomy	6/13 pt	1/11 pt	0.014
Survival			0.99
Toxicity			
Mean weight gain	2 kg	0	0.01
Increased creatinine	39%	49%	
Neurosensory toxicity Smyth et al: Ann Onc 8(9):569, 19	39% 997	49%	0.22

Glutathione for Relapsed Ovarian Cancer/CDDP (n=33)

	Glutathione n=33/2	Placebo n=33/2
Therapy delivered		
Greater than 85% dose intensity	<mark>94%</mark>	60%
Antitumor activity		
Overall response rate	75%	60%
Complete response	44%	27%
Median survival	21 mo	15.9 mo
Mean sural nerve sensory amplitude potential after 9 wk, compared to baseline values	-26%	-43%

Golombo et al: Int J Gynecol Cancer 5(2):81, 1995

Glutathione for Ovarian Cancer/CDDP

Glutathione

n=16

75%

Overall response rate

Bogliun et al: Ital J Neurol Sci 13(8):643, 1992

No treatment

n=17

60%

Glutathione Neuropathy Prevention, N08CA

