NCI – March 2010

• NCI FY 2010 operating budget and the President’s budget for FY 2011

• Report on National Cancer Advisory Board Working Groups

• Executive Committee Retreat
NCI FY 2010 Operating Budget Development

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 2009 operating budget (ARRA = $6,223,448)</td>
<td>$4,966,931</td>
</tr>
<tr>
<td>FY 2010 appropriation</td>
<td>$5,103,388</td>
</tr>
<tr>
<td>Difference, 2009 to 2010</td>
<td>+136,457</td>
</tr>
<tr>
<td>Percent change, 2009 to 2010</td>
<td>+2.7%</td>
</tr>
</tbody>
</table>

(dollars in thousands)
NCI Appropriated Budget Trends

<table>
<thead>
<tr>
<th>Year</th>
<th>Budget</th>
<th>Change</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY06</td>
<td>$4.79B</td>
<td>+0.2%</td>
<td></td>
</tr>
<tr>
<td>FY07</td>
<td>$4.80B</td>
<td>+0.6%</td>
<td></td>
</tr>
<tr>
<td>FY08</td>
<td>$4.83B</td>
<td>+2.8%</td>
<td></td>
</tr>
<tr>
<td>FY09</td>
<td>$4.97B</td>
<td>+2.7%</td>
<td></td>
</tr>
<tr>
<td>FY10</td>
<td>$5.10B</td>
<td>+3.1%</td>
<td></td>
</tr>
<tr>
<td>FY11</td>
<td>$5.26B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

($6.23B)
NCI FY 2010 Budget by Mechanism

- Research Project Grants, 2,219,057 (44%)
- Research Centers, 570,103 (11%)
- Other Research, 423,728 (8%)
- Research Training, 71,214 (1%)
- R&D Contracts, 626,267 (12%)
- Intramural Research, 792,575 (16%)
- RMS, 390,802 (8%)
- Buildings & Facilities, 792 (0%)

Total FY 2010 Budget: $5,101,666 (dollars in thousands)
“To accelerate progress in biomedical research, NIH investments will focus on priority areas including genomics, translational research, science to support health care reform, global health, and reinvigorating the biomedical research community.”

The Federal Budget for Fiscal Year 2011
Feb. 1, 2010
The President’s 2011 Budget Proposal

“The Budget includes $6.036 billion to support a range of bold and innovative cancer efforts...”

• Initiation of 30 new drug trials in 2011
• Doubling of the number of novel compounds in Phase 1–3 clinical trials by 2016
• Complete a comprehensive catalog of cancer mutations for the 20 most common malignancies within 10 years

NCI allocation in the President’s Budget for 2011: $5.260 billion.
NCI – March 2010

• NCI FY 2010 operating budget and the President’s budget for FY 2011

• Report on National Cancer Advisory Board Working Groups

• Executive Committee Retreat
NCAB Working Groups

- **Working group on The Cancer Genome Atlas (TCGA)**
 - Chair: Dr. Jennifer Pietenpol, director of the Vanderbilt-Ingram Cancer Center

- **Ad hoc Working Group to Create a Strategic Scientific Vision for the National Cancer Program and review of the National Cancer Institute**
 - Co-chairs: NCAB members William Goodwin, Robert Ingram, and Dr. Bruce Chabner; and Dr. Phillip Sharp, Former NCAB Chair
“Review the NCI current operating structure and strategic vision — to assess the effectiveness of the scientific programs and business management structure of the NCI, in order to determine the gaps and opportunities for delivering scientific progress in understanding, diagnosing, treating, and preventing cancer.”
Working Group Membership and Process

- **Broad representation** from academia, industry, and advocacy communities
- **Three face-to-face meetings** using panel discussion on special authorities, relationships to other agencies, strategic scientific vision, organizational structure, training, advocacy, global health
- **Sub-working Groups** will review basic, translational, clinical, population-based scientific programs
- **Report to the NCAB Activities and Agenda Subcommittee in September 2010**
NCI – March 2010

• NCI FY 2010 operating budget and the President’s budget for FY 2011

• The National Cancer Advisory Board

• Executive Committee Retreat
NCI EC Scientific Retreat

Goals:

“To inform NCI’s leadership about the directions that its cancer research efforts should take to maximize the impact of personalized medicine in clinical care and public health, within the context of current cancer research opportunities, patient care priorities and the health care environment.”
NCI EC Scientific Retreat

Agenda:

✓ Current Realities and the Future of Personalized Cancer Medicine
 — Croyle, McClellan, Khoury, Fouad, Thun, Simone, Freedman

✓ Informing the Cancer Biological Space – Genomics and Beyond
 — Barker, DePinho, Carr, Hill, Hillis, Tlsty, Lowy

✓ Creative Thoughts on How to Translate Genomics for Patient Benefit
 — Helman, Wiltrout, Sawyers, Trent, Mirkin, Norton

✓ “A New Biology for the 21st Century”
 — Yamamoto

✓ Role of Computational Sciences, Systems Biology and Modeling
 — Singer, Friend, Buetow, Califono, Cantley, Nevins, Mills
TCGA - the example

Somatic epi/genomics

- Clinically annotated robust cohort of high-quality biospecimens
- Multi-dimensional characterization
- Integrative analyses

➡️ What is it missing?

Ronald A. DePinho, MD, Dana-Farber Cancer Institute
Somatic vs Germline

Somatic epi/genomics

Germline Susceptibility

- Need to understand how somatic events manifest themselves in context of germline susceptibility...
- \(\rightarrow \) GWAS integrated with TCGA

Ronald A. DePinho, MD, Dana-Farber Cancer Institute
What about protein level information?

- *Gap in proteomics is evident on many levels; needed are high resolution methods to deeply probe the proteome and understand how such data relates to genetic information...*

Ronald A. DePinho, MD, Dana-Farber Cancer Institute
Clinical annotation is key

- Transform the way human phenotype annotation - not just standard biospecimens banking, but electronic medical records, IT infrastructureFramingham like profiles...

Ronald A. DePinho, MD, Dana-Farber Cancer Institute
Explosion of Biological Genomic & Clinical Information

- Computational methods for integrating massive molecular and clinical datasets obtained across sizable populations into predictive disease models can recapitulate complex biological systems.

- Data should feed and refine a set of models that inform our understanding of disease causality as well as generate new mechanisms, targets, diagnostics and knowledge.

Stephen Friend, M.D., Ph.D., Fred Hutchinson Cancer Research Center
Four Requirements to enable a Platform for Clinicians, Scientists and Patients

- Data Repository (Commons)
- Platform Architecture System
- Probabilistic Causal Network Models Of Disease
- Rules And Governance

How to Leverage Existing NCI Programs: caBIG and TCGA?

Stephen Friend, M.D., Ph.D., Fred Hutchinson Cancer Research Center
What is the New Biology?
The essence: integration

- re-integration of the many sub disciplines of biology
- working integration into biology of physics, chemistry, engineering, mathematics and computation

Will create a research community able to tackle extremely complex biological and societal problems

Keith Yamamoto, Ph.D., University of California San Francisco
RECOMMENDATION: Launch a National New Biology Initiative

a multi-agency, multi-year, multi-disciplinary initiative to capitalize on the extraordinary advances recently made in biology and address four major societal challenges.

THE CHALLENGES

- Food: Adapt any food crop to any growing condition
- Environment: Diagnose and repair ecosystem damage
- Energy: Expand sustainable alternatives to fossil fuels
- Health: Achieve individualized surveillance and care

Relatively small investment in inspiring and crucial challenges will lead to development of cross-cutting technologies and sciences that will leverage the value of all biological research.

Biology is at a tipping point—poised to contribute to solving major societal problems

A New Biology for the 21st Century

THE NATIONAL ACADEMIES

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES
Dr. Sawyers’ Proposals for NCI

- **Define all cancer drug targets within 10 years**
 - Run the TCGA project to completion
 - Conduct a cancer synthetic lethal screen across several hundred cancer cell lines and xenografts

- **Jump start the molecular diagnostics field**
 - Establish an academic research community working on the science of molecular diagnostics (The Cancer Biomarker Project)

- **Build a community network of molecular pathology centers now**
 - Profile tumors from thousands of cancer patients
 - Establish registries of “pre-genotyped” patients available for clinical trials
 - Engage patients and advocates
Themes From EC Scientific Retreat

- Biospecimens, patient data, and patient-reported outcomes needed for evaluation, to inform healthcare reform

- The research reward culture needs to fully recognize the contributions of participants in team science

- Single-agent interventions will not work

- Need to utilize cancer centers, SPOREs and other programs to test new modalities
Messages From EC Scientific Retreat

• Issues related to generation of data (TCGA, other sequencing data, bio-analytics, functional biology)
 – Management, storage, analysis
 – Data sharing
 – Modeling
 – Application at point of care

• Virtual cohort of patients; “on demand” trials
 – Follow patients as their disease evolves (cancer EHR/caBIG)
 – From phenotype through genomic profiling (caHUB)
 – Form basis for new clinical trials system
The NCI’s Target Discovery and Development Network
CTWG Initiatives and Committees

- The **22 Clinical Trials Working Group initiatives** address coordination, scientific prioritization, standardization, operational efficiency, and enterprise-wide concerns

- **Scientific Steering Committees:**
 - Breast Cancer Steering Committee (2008)
 - Gastrointestinal Steering Committee (2006)
 - Genitourinary Steering Committee (2008)
 - Gynecologic Steering Committee (2006)
 - Head and Neck Steering Committee (2007)
 - Thoracic Malignancy Steering Committee (2008)
 - Investigational Drug Steering Committee (2005)
 - Symptom Management and Health-related Quality of Life Steering Committee (2006)
 - Patient Advocate Steering Committee (2008)
If we ask ourselves...
“Where is the optimal integration of molecular cancer science and clinical research being conducted?”
Patient selection for translation

✔ NCI Ca Ctrs.
✔ NCCCP
✔ SPOREs
✔ CCOPs
✔ Coop. Grps.

NIH Clinical Ctr.
Thank you, Lynn, for all you do for NCI.
Patients & Families

www.cancer.gov
The National Cancer Act

• 1912: Congress establishes the **U.S. Public Health Service**

• 1922: Cancer research is initiated within the PHS

• 1937: Congress establishes the **National Cancer Institute** within the Public Health Service

• 1948: Congress establishes the **National Institutes of Health**
Unsolicited RPGs Far Outnumber Solicited
The Science of Personalized Cancer Medicine

1) Predicting your risk of getting cancer:

- Genome wide association studies (GWAS) offered great promise for finding “all” clinically important cancer risk alleles.
- But all the newly discovered markers have modest hazard ratios and are therefore not clinically “actionable.”
- BRCA1 and 2 remain by far the most important predictive markers.

2) Predicting the best treatment for your cancer:

- Mutations, gene translocations, copy number alterations, etc. in the tumor (not germ line) define distinct diseases and new drug targets.
- Targeted cancer therapy works when used in the right patients.
- But we are still in the early days of knowing how to identify the right patients.
Messages From EC Scientific Retreat

• The continuum of patient care begins before diagnosis. How can we create comprehensive cohorts to fully inform cancer care and healthcare in general?

• Effective translational science requires active coordination end to end. How will the science of tomorrow be fostered through a complement of investigator-initiated and more directed research? What is the future of team science?

• Cancer treatment going forward will not be single-agent interventions but recipes addressing specific genetic mutations and signaling pathways. How can our cancer research infrastructure more effectively test new approaches quickly and efficiently?
Messages From EC Scientific Retreat

• New biology will be accomplished by team science – “a convergence of big and small science”
• New biology will be “data driven science”
• Establishing proteomics and function is essential
• Cancer is emergent complex system – network and pathway biology
• Translation will be facilitated by “PPP” and a reengineered clinical trials system - “virtual trials”
NCI FY 2010 Operating Budget: Infrastructure

<table>
<thead>
<tr>
<th>Budget increase available</th>
<th>+$136,457</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Taps and assessments</td>
<td>-17,100</td>
</tr>
<tr>
<td>▪ Est. increase, NIH taps ($15,000)</td>
<td></td>
</tr>
<tr>
<td>▪ NIH Director’s 1% transfer authority (?)</td>
<td></td>
</tr>
<tr>
<td>▪ HHS Secretary’s transfer authority (?)</td>
<td></td>
</tr>
<tr>
<td>▪ Genes, Env. & Health Initiative ($2,100)</td>
<td></td>
</tr>
<tr>
<td>• Mandated salary increases (2.4%)</td>
<td>-21,400</td>
</tr>
<tr>
<td>• Rent/lease/utilities/renovations increase</td>
<td>-10,000</td>
</tr>
<tr>
<td>• Small business program increase</td>
<td>-2,000</td>
</tr>
<tr>
<td>• ATRF start-up and operating costs</td>
<td>-2,317</td>
</tr>
<tr>
<td>Subtotal available</td>
<td>+$83,640</td>
</tr>
</tbody>
</table>

(dollars in thousands)
NCI FY 2010 Operating Budget: Science

<table>
<thead>
<tr>
<th>Subtotal available</th>
<th>+$83,640</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFAs approved to go to BSA & publish</td>
<td>-156,762</td>
</tr>
<tr>
<td>- RPGs ($96,530)</td>
<td></td>
</tr>
<tr>
<td>- Other research grants ($9,947)</td>
<td></td>
</tr>
<tr>
<td>- Division controllable ($50,285)</td>
<td></td>
</tr>
<tr>
<td>NCI Director’s Reserve</td>
<td>-25,000</td>
</tr>
<tr>
<td>AIDS target increase</td>
<td>-6,248</td>
</tr>
<tr>
<td>Latin America breast cancer pilot</td>
<td>-1,400</td>
</tr>
<tr>
<td>Subtotal available</td>
<td>-$105,770</td>
</tr>
</tbody>
</table>

(dollars in thousands)
NCI FY 2010 Operating Budget: Recoveries

<table>
<thead>
<tr>
<th>Subtotal available</th>
<th>-$105,770</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recoveries from divisions and offices</td>
<td>+74,155</td>
</tr>
<tr>
<td>Subtotal available</td>
<td>-$31,615</td>
</tr>
</tbody>
</table>

(dollars in thousands)
NCI FY 2010 Operating Budget: Additional Requests

<table>
<thead>
<tr>
<th>Subtotal available</th>
<th>-$31,615</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Division, Office, and Center requests</td>
<td>-$265,259</td>
</tr>
<tr>
<td>▪ High priority list ($91,968)</td>
<td></td>
</tr>
<tr>
<td>▪ Research ($76,077)</td>
<td></td>
</tr>
<tr>
<td>▪ Infrastructure ($22,268)</td>
<td></td>
</tr>
<tr>
<td>▪ Facilities ($74,946)</td>
<td></td>
</tr>
<tr>
<td>Total, including all requests</td>
<td>-$296,874</td>
</tr>
</tbody>
</table>

(dollars in thousands)
NCI FY 2008 and 2009 Competing RPGs

<table>
<thead>
<tr>
<th></th>
<th>FY 2008</th>
<th>FY 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competing RPGs total</td>
<td>1,284 grants, $456,644</td>
<td>1,235 grants, $457,834</td>
</tr>
<tr>
<td>Competing RPG RFA portion</td>
<td>108 grants, $50,726</td>
<td>89 grants, $49,010</td>
</tr>
</tbody>
</table>

(dollars in thousands)
The NCI Experimental Therapeutics (NExT) Pipeline

- Cancer Centers
- SPORE
- RO1/PO1
- Biotech & Small Pharma
- Imaging/IDG
- RAID
- DDG

CBC Created

Drug Discovery | Early Development | Full Development
Themes From EC Scientific Retreat

- Biospecimens, patient data, and patient-reported outcomes needed for evaluation, to inform healthcare reform
- **The research reward culture needs to fully recognize the contributions of participants in team science**
- Single-agent interventions will not work
- Need to utilize cancer centers, SPOREs and other programs to test new modalities
The National Cancer Program

- The **Director of the NCI** shall **coordinate all activities** of the NIH relating to cancer with the National Cancer Program.

- In carrying out the NCP the NCI Director shall:
 - With the advice of the NCAB, plan and develop an expanded, intensified and coordinated cancer research program.
National Cancer Advisory Board

- Replaced prior National Advisory Cancer Council
- Members appointed by the President to advise and assist the Director with respect to the National Cancer Program
- May hold such hearings and act at such times as the Board deems advisable to review programs and activities of the National Cancer Program
Tissue Architecture and Phenotype is Controlled by Stromal-Epithelial Interactions

Normal Mammary Gland

Thea D. Tlsty, Ph.D., University of California, San Francisco
The National Cancer Act 1971

- Senate authorizes a “Panel of Consultants on the Conquest of Cancer”
 - Panel recommends the NCI as the logical organization to administer a National Cancer Program — to be strengthened, upgraded and freed from the constraints of HEW, PHS and NIH

Sen. Ralph Yarborough of Texas, panel chair
Authority of the Director

• To acquire, construct, improve, repair, operate and maintain cancer centers, laboratories, research and other facilities and equipment

• **To appoint advisory committees** to advise him or her with respect to Institute functions

• To accept voluntary and uncompensated services
The Act provides for the establishment of “fifteen new centers for clinical research, training and demonstration of advanced diagnostic and treatment methods relating to cancer.”
• Data on large sci projects
A moment of unique opportunity --

Current research has brought biology to an inflection point

- See both great complexity and paths to solution; data/knowledge/understanding gaps both growing and closing
- Integration of sub disciplines within biology; one biology, so advances not discipline-specific
- Cross-discipline integration: life science research by physical, computational, earth scientists, engineers
- Technological advances enable biologists to collect data unprecedented in quantity and quality
- Past investments providing value beyond expected

An opportunity for a New Biology with impact at an unprecedented scale
Why New Biology is best way to advance medical research and health

- Biological
 - Reaching design-manipulation-prediction level difficult with only NIH budget and research
 - One biology: advances in one discipline aid others
 - Inflection point: new technologies ("all" and "one") require extending and integrating biological research into fields supported by other agencies
 - Genotype-phenotype gap: health determined by genotype, environment, nutrition, so health requires addressing food, environment, energy issues