U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Molecular Characterization of Screen-Detected Lesions

NCI Board of Scientific Advisors November 2013

Barry Kramer (Division of Cancer Prevention) Dinah Singer (Division of Cancer Biology)

Current Challenges with Screening and Early Detection

- Phenotypically distinguishing between lesions that are likely to progress and those that are indolent and require no immediate treatment
- Predicting whether lesions that are detected by sensitive screening tests are indolent (hence, not requiring immediate treatment) or progressive and potentially life-threatening

Increase in cancer incidence (particularly early stages), but no change in mortality indicates overdiagnosis

Requirements for Overdiagnosis

- Existence of a silent disease reservoir
- Activities leading to its detection (particularly screening)

The Heterogeneity of Cancer Progression

(Courtesy of H. Gilbert Welch, Dartmouth)

Length Biased Sampling

U.S. Prostate Cancer Incidence vs. Mortality Over-Diagnosis

Evidence of Melanoma Overdiagnosis in the Medicare Population

Use of Screening Mammography and Incidence of Stage-Specific Breast Cancer in the U.S., 1976–2008

Bleyer A, Welch HG. N Engl J Med 2012;367:1998-2005.

Key Biological Questions

- What molecular/cellular characteristics (genetic, epigenetic, cell physiology, signaling profile, metabolism, microenvironment, and immune reaction) define indolent versus progressor lesions that are detected by screening tests?
- Are there lineage relationships among indolent, interval, and malignant lesions?
- What kind of selective forces shape the evolution of a cancer during its progression to become invasive?
- What role does the tissue microenvironment play in modulating or determining the biological behavior of the screen-detected lesions?

DCP Workshop on Molecularly Defined Natural History of Cancer

- A two-day Think-Tank meeting was held on March 8-9, 2012 in Bethesda, MD to discuss the overdiagnosis issue
- The conclusion: it is critical to determine the molecular and cellular characteristics of both the lesion itself and its microenvironment that predict lesion's behavior.

Microenvironment and Tumor Progression

- Role of microenvironment in tumor progression is being demonstrated.
- Chromosomal instability, microsatellite instability, genome-wide aneupoloidy, loss or gain of whole chromosome or chromosome arms may accelerate progression.
- However, these studies are cross-sectional and do not address the dynamics of evolving lesions, especially in the context of screening.

Constitution of Tumor Microenvironment

Physiological Parameters [glycolytic pathway, hypoxia, <u>acidic tumor microenvironment (acidic pH)</u>, etc.]
Malignant Cells (cancer cell, cancer stem cell, etc)
Vasculature and Stroma (endothelial progenitor cell, pericyte, bone marrow derived cell, etc)
Immune Response Cells (macrophages, mast cells, tumor-infiltrating lymphocytes, etc)
Extracellular Matrix (fibronectin, collagen, integrins, MMP, tetraspanins, etc)
<u>Secreted Proteins</u> (chemokines, growth factors, etc), including gradients

Goal of This Initiative

To support a consortium of multidisciplinary research programs that undertake a comprehensive characterization of tumor cell and microenvironment components of screening-detected early lesions and missed interval cancers

Types of Studies That Can be Undertaken (1)

- Molecular & cellular comparisons to determine whether a subset of screen-detected lesions shares features with aggressive interval cancers (missed by screening) that are likely to have progressing phenotypes
- Single cell analyses of tumor heterogeneity within lesions
- Phenotyping cellular components of lesions, including the tumor cells and surrounding microenvironment

Types of Studies That Can be Undertaken (2)

- Establishing novel mouse models, organoid cultures or patient derived xenografts from screeningdetected lesions that maintain the original tumor architecture
- Systems approaches and modeling using experimental data (genomics, epigenomics, proteomics, imaging etc.) to define "disease dynamics"
- Sequential imaging together with molecular approaches to elucidate dynamic changes occurring during progressive disease

Organization Structure of the Consortium

Why Consortium?

- Uniform data collection, protocols, analyses
- Common Data Elements (CDEs) for serial sample collection and clinical annotation
- Reproducibility of data collection including verification and auditing
- Creation of a national resource for valuable samples of screen-detected and of interval cancers for future use
- Central management of IRB, material transfer agreements, and protocols

Portfolio Analysis

- Portfolio analysis yields a few funded grants in progression and microenvironment; however these studies are preliminary and not generalizable because the lack of appropriate annotation, e.g., screen- or symptom-detected lesions
- Keywords: indolent cancer and progression (3)
- Therefore, portfolio analysis fully supports the need for an early diagnosis initiative

Funding Mechanism and Budget

- Cooperative Agreement U01/U24 \$5 M/yr of which \$1.6 M supported by Breast Cancer Stamp Act Funds; Total Five Year \$25 M
 - Breakdown: \$4.5 M for U01 and \$500 K for U24 per year;
 - Five-Year Total Cost: \$25 M
- Allows NCI staff involvement in providing direction, cross talk, dissemination of information and assistance in meeting the programmatic goals
- Facilitates development of resources for biospecimens, reagent generation and dissemination of research tools and biologics
- NCI-DEA organized Special Emphasis Panel to review the application

Application Requirements

Applications will be required to:

- Include collaborative arrangement with existing or ongoing biospecimen networks or consortia as a partner on the application
- Clearly demonstrate the ability to procure appropriate specimens for the proposed study
- Be willing to share samples across the Consortium on cross-laboratory discovery and verification

Above requirements will be made part of the Notice of Grants Award (NGA)

Existing Resources

- Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO)
- National Lung Screening Trial (NLST)
- Clinical and Translational Science Awards (CTSA)
- Canary-EDRN Prostate Active Surveillance Study (PASS) Cohort
- Specialized Programs of Research Excellence (SPOREs)
- DOD Specimen Banks (case-control specimens on prostate, breast, colon)
- VA Hospitals (archived specimens)
- Various Academic Autopsy Collections (Nebraska, Cornell, Johns Hopkins, etc.)

Number of Cases by Specimens Available for Selected Cancers in PLCO¹

	Serum (pre-Dx)	Plasma (pre-Dx)	Red Cells (pre-Dx)	Buffy Coat	Whole Blood	Buccal Cells/ DNA ²	Tumor Tissue
Prostate	3924	3870	4018	3270	3106	2131	1058
Screen-detected	1448	1399	1466	1170	1053	NA	496
Interval	123	121	123	90	88	NA	41
Others ³	2353	2350	2429	2010	1965	NA	521
Lung	1570	1202	1589	1060	1051	870	436
Screen-detected	268	82	262	197	159	NA	97
Interval	141	57	138	84	94	NA	17
Others ³	1161	1063	1189	779	798	NA	322
Breast (F) ⁴	1984	1930	1972	1803	1583	1687	807
Melanoma⁴	636	625	645	619	505	494	NA ⁵
Pancreas ⁴	357	348	345	262	217	24	NA ⁵

Note:

- 1. Data as of January 31, 2013.
- 2. Buccal cells were collected from control arm only.
- 3. Others: Never screened and post-screening cases (and control arm for tumor tissue).
- 4. Detection mode for breast cancer, melanoma and pancreatic cancers is unknown.
- 5. Tumor tissue samples are not available for melanoma and pancreatic cancers.

NLST Specimens and Screen Detected/Interval Cases

		# of Cases	% of Cases with Tumor Tissue Available ¹	% of Cases with Serum, Urine and Sputum Available ¹
Screen detected	CT Arm	649	65%	20%
	CXR Arm	279	56%	20%
Interval	CT Arm	44	26%	20%
	CXR Arm	137	24%	20%
Others ²	CT Arm	367	21%	20%
	CXR Arm	525	13%	20%
Total lung	CT Arm	1060	44%	20%
cancers	CXR Arm	941	25%	20%

Note:

1. Approximate percentages.

2. Never screened and post-screening cases.

Available PCPT Biospecimens by Arm and Detection Mode

Arm	Detection mode	# of prostate cancer cases ¹	% of Cases with pre-Dx serum available ²	% of Cases with WBC/DNA available ²	# of cases with prostatectomy tissue available ³
Finasteride	For cause ^₄	435	~95%	~60%	149
	End of study biopsy	368	~95%	~60%	73
	All	803	~95%	~60%	222
Placebo	For cause ⁴	571	~95%	~60%	186
	End of study biopsy	576	~95%	~60%	120
	All	1147	~95%	~60%	306

Notes:

1. Data from: Thompson et al., N Engl J Med. 2003 Jul 17;349(3):215-24. The influence of finasteride on the development of prostate cancer.

- 2. Estimated percentage of cases with specimens available.
- 3. Data from: Lucia et al., J Natl Cancer Inst. 2007 Sep 19;99(18):1375-83. Finasteride and high-grade prostate cancer in the Prostate Cancer Prevention Trial.
- 4. Number of cases in whom a biopsy was performed for a cause either during the study or at the end of study and cases who underwent another procedure such as transurethral resection of the prostate during the trial.