Pediatric Phase I / Pilot Consortium

Malcolm A. Smith, MD, PhD Cancer Therapy Evaluation Program November 2011

Pediatric Phase I / Pilot Consortium – Children Are Different

- Multi-institutional studies required:
 - Substantial infrastructure required for site training, for study monitoring, and for implementing PK/PD/Imaging studies
- Ethical issues limit risks to children participating in correlative research studies
 - Direct impact on type of PD studies that can be performed
- Pharmaceutical interest is limited \rightarrow
 - Limited non-NIH funding stream for pediatric drug development
 - NCI plays unique role in supporting teams of experienced investigators to safely & efficiently conduct multiinstitutional "first-in children" studies

US childhood mortality trends for lymphoma and leukemia, and all other cancer sites combined

Smith M A et al. JCO 2010;28:2625-2634

Strategy for Discovering Effective New Treatments for Children with Cancer

COG Phase 1/Pilot Consortium

- History of NCI support:
 - Pediatric phase 1 clinical trials resource supported by NCI since 1992
 - COG Phase 1 Consortium supported since 2002
 - NCI continues providing primary support for pediatric phase 1 trials in children with cancer in North America
- Ongoing need:
 - Approximately 20% of children for whom current treatments not sufficiently effective. Continued need for NCI support of an experienced team of investigators to conduct first-in-children studies for new anticancer agents with novel mechanisms of action and molecular targets

Consortium Contributions

- Phase 1 evaluations of targeted agents building on genomic and preclinical discoveries:
 - ALK inhibitor crizotinib phase 1 study focusing on patients with neuroblastoma and ALCL and other tumors with ALK mutations.
 - JAK inhibitor ruxolitinib (INCB018424) phase 1 study following up on discovery of JAK mutations in high-risk B-precursor ALL.
 - Aurora A kinase inhibitor MLN8237 phase 1 study following up on PPTP findings of high activity for MLN8237 against ALL and neuroblastoma preclinical models.
 - NTX-010 (Seneca Valley Virus, SVV-001) oncolytic virus phase 1 study focusing on patients with neuroendocrine tumors
- COG Phase 1 Consortium conducts phase 1 studies with intensive monitoring and PK / PD evaluations
- COG builds on Consortium phase 1 studies by developing phase 2 and subsequently phase 3 clinical trials using dose/schedule/PK data generated by the Consortium.

JAK mutations in "BCR-ABL1-like" ALL

- JAK2 (n=16): 10 R683G; 3 non-R683G pseudokinase domain; 3 kinase domain
- JAK1 (n=3): 3 pseudokinase domain
- JAK3 (n=1): uncertain functional consequences

Mullighan CG, et al. PNAS 2009:106(23):9414-9418

Clinical Translation by COG Phase 1 Consortium

- Phase 1 trial of JAK inhibitor ruxolitinib (INCB18424) in Sept 2010 in collaboration with Incyte.
- Ruxolitinib in development for adults with myelofibrosis (MF):
 - JAK2 mutations common for this condition
 - NDA filed in June 2011
- Eventual COG plan for combining JAK inhibitor for JAK-mutant ALL in same way that imatinib has been added to standard chemotherapy for BCR-ABL ALL.

ALK is an Oncogenic Kinase in Neuroblastoma

•Co-discovery of ALK as the familial neuroblastoma gene (Mosse, Nature 2008) and frequent somatic amplification and mutation (TARGET)

- Amplification: 31/599 (5.2%)
- Focal gain: 102/599 (17.0%)
- Mutations in kinase domain: 43/552 (7.2%)
- Mutations in extracellular domain: Present, frequency still be defined

ALK-mutated (translocated) tumors are highly sensitive to ALK inhibitors

- PF-02341066 in the Karpas299 xenograft model (NPM-ALK ALCL).
- 1st cycle of treatment initiated on day 11 through day 23 (except the 100 mg/kg group, which was treated through day 28).
- A 2nd cycle of treatment initiated on day 62 - 76 for the 100 mg/kg/d group after tumor regrowth.
- COG Phase 1 Consortium initiated phase 1 trial of ALK inhibitor crizotinib (PF-02341066) Sept 2009.

PF-2341066 (mg/kg/day)

Consortium Contributions

- Phase 1 evaluations of targeted agents building on genomic and preclinical discoveries:
 - ALK inhibitor crizotinib phase 1 study focusing on patients with neuroblastoma and ALCL and other tumors with ALK mutations.
 - JAK inhibitor ruxolitinib (INCB018424) phase 1 study following up on discovery of JAK mutations in high-risk B-precursor ALL.
 - Aurora A kinase inhibitor MLN8237 phase 1 study following up on PPTP findings of high activity for MLN8237 against ALL and neuroblastoma preclinical models.
 - NTX-010 (Seneca Valley Virus, SVV-001) oncolytic virus phase 1 study focusing on patients with neuroendocrine tumors
- COG Phase 1 Consortium conducts phase 1 studies with intensive monitoring and PK / PD evaluations
- COG builds on Consortium phase 1 studies by developing phase 2 and subsequently phase 3 clinical trials using dose/schedule/PK data generated by the Consortium.

Further Clinical Evaluations of Agents Recently Studied by COG Phase 1 Consortium

Trial	Agent(s)	Current status
ADVL0319	Lenalidomide	Phase 2 CNS trial in children with recurrent low-grade gliomas
ADVL0413	Sorafenib	Frontline for FLT3 positive AML
ADVL0414	VOIT	Frontline COG pilot study for high risk rhadomyosarcoma
ADVL0416	SAHA + Cis RA	Frontline PBTC trial for infants with CNS embryonal tumors
ADVL0419	Valproic acid	Frontline Texas-Oklahoma Pediatric Neuro-Oncology trial in BSG and unresectable HGG
ADVL0515	CBDCA + VBL	Under consideration by CNS tumor committee
ADVL0516	Dasatinib	Frontline COG trial for children/young adults with Philadelphia chromosome positive ALL
ADVL0517	Ispinesib	No further development; CTEP withdrew IND
ADVL0612	Sunitinib	Phase 2 COG trial for children with recurrent CNS tumors
ADVL0712	IMC-A12	Phase 2 COG trial for children with sarcomas and other solid tumors and frontline study for metastatic rhabdomyosarcoma
ADVL0714	VEGF Trap	No further pediatric development due to toxicity and PK profile
ADVL0812	MLN8237	Phase 2 COG trial in refractory/recurrent solid tumors including neuroblastoma and ALL

Would making the Phase 1 Consortium part of COG be a more efficient use of resources?

- The Consortium is integrated with COG in appropriate ways:
 - Clinical data management system
 - Protocol development resources
 - Shared meetings
 - Thus, no duplicative infrastructure
- Scope of clinical trials for the Consortium is very different from those of COG:
 - Intensity of monitoring and data reporting
 - Numbers of patients per trial and numbers of participating institutions
 - Emphasis on PK, PD, and imaging endpoints
 - If COG were to take responsibility for phase 1 trials, it would need to replicate the Consortium's capabilities in these areas
- There would be little or no budgetary savings from incorporating the Consortium into COG assuming that the same scope of work was maintained

What is gained by having the Phase 1 Consortium distinct from COG?

- Focused NCI and peer review to ensure that the Consortium has the following:
 - Strong scientific leadership,
 - Data collection and management procedures that meet the high standards for granularity, accuracy, and timeliness required for phase 1 trials,
 - Appropriate integration of PK and PD
 - High productivity in developing and completing clinical trials
- Phase 1 studies would represent a small percentage of COG accrual if Consortium were merged into COG:
 - Risk that phase 1 trials would be de-emphasized because of the higher priority for COG of larger phase 2 and 3 trials

Budget Considerations

- Flat Budget relative to FY10:
 - Direct cost in Year 1 of \$3 million
 - Total cost in Year 1 of \$3.47 million
- Apportioning of funds:
 - Scientific Leadership (~10%)
 - Protocol Development & Regulatory (15%-20%)
 - Statistics and Data Management (~10%)
 - Imaging (15%-20%)
 - Pharmacokinetic/Biology Support (~5%)
 - Travel (4%)
 - Basic Member Institution Site Support (~40%)

Conclusions

- COG Phase 1 / Pilot Consortium is premier organization for conduct of "first in children" clinical trials for anticancer agents
- Record of accomplishment:
 - Protocols activated and completed
 - Patients enrolled
 - Publications and presentations
 - Contributions to COG PK studies
 - Mentoring junior faculty
 - Integrating new imaging methods into pediatric phase 1 trials
- Consortium is needed so that children can benefit from advances in cancer biology and drug development in coming years.