

## Imaging and Multi-modality Navigation in Interventional Oncology

 Molecular Interventions: Drug + Device + Image •Multi-modality Interventions: Medical GPS during procedures •Operating Room of Future: Navigation & Robots Personalized Oncology Image-Guided Drug Painting

Brad Wood, MD NCI Center for Interventional Oncology **Intramural Research Program** NCI BSA, October, 2009



### PET (Metabolic) Guided Procedures



### Closing the Gap Between Diagnosis & Therapy



### Minimally Invasive & Image Guided: Convergence of Devices & Imaging



## Center for Interventional Oncology Mission

- Close gap between Diagnosis & Therapy
- Establish a collaborative environment to bring together multidisciplinary partners to help define minimally-invasive imageguided methods for tx of locally-dominant cancer





# Collaborative Network: Interdisciplinary Inter-agency

Translational

International

Industry / Extramural Academic / Government







http://www.cc.nih.gov/centerio/index.html



#### 1955 NIH: Open Heart Surgery w/Extra-Corporal Circuit



#### 2009 NIH: Percutaneous Liver Perfusion











### Imaging and Multi-modality Navigation in Interventional Oncology

### Overview

- "Molecular Interventions":
  - Drug + Device + Image
- Multi-modality Interventions:
  - Medical GPS during procedures
- Operating Room of Future:
  - Navigation & Robots
  - Personalized Local & Regional Oncology
  - Image-Guided Drug Painting:
    - RFA + heat-deployed liposomal drug
    - Image-able drug eluting bead + RFA
    - HIFU + heat-deployed liposomal contrast + drug



#### Early 20<sup>th</sup> Century Stereotactic Frame

2009 NIH: Medical GPS devices, Fusion-guided procedures, Image-guided robotics



### Needle Ablation Complex Geometries: Outcomes Depend Upon Accuracy





# Patient-Specific Treatment Plans



Risk to Adjacent Anatomy (Heart)

#### **Risk of Heat Sink**



 Automated RFA planning tool integrated with navigation



US and CT view, with planned composite ablation and tracked needle overlay

# O.R. of the Future

- Navigation
- Visualization
- Automation
- Real-Time Fusion



# Medical GPS / Fusion IR



# **GPS-Tumor** Ablation:

From Idea to Lab to Animal to Patient to FDA approval to Market



Accuracy, Error & benefit defined in >200 patient clinical trial

#### CT, US & PET guided fusion biopsy in patient with lymphoma



## "Molecular Interventions" Device + Image + Drug



Source: Brad Wood, National Institute of Health

By Suzy Parker, USA TODAY

#### Prostate Interventions: Idea to Design to Lab to Phantom to Animal to Patient





### Smart Needles use MRI Info *outside* of MRI:



#### No need for MRI during procedure



## GPS Fusion Makes the Dx



# Automated Motion Correction



3.1 mm error

>140 patient trial

83% pts w high suspicion MR had positive fusion bx Aggressiveness correlated with imaging

# Smart Surgical Equipment



# Multi-Modality Surgery





# Smart Surgery



### Steerable Bronchoscopy Catheter



# Tracked Stent Grafts for Aortic Aneurysm Repair





### Image to Tissue Correlation for Personalized Oncology & Drug Discovery

Imaging



Image registration Sample collection





<u>Biomarker</u> <u>Gene</u> <u>Protein</u>



prognosis response sensitivity resistance metabolism

### Image to Tissue Correlation for Personalized Oncology & Drug Discovery

- Biomarkers
  - Identify target
  - Verify delivery
  - Predict response
  - Toxicity
  - Prognosis
- Individualize tx / Pt-specific cocktails
  - Timing
  - Sensitivity
  - Resistance
- Drug Discovery
  - Target
  - Efficacy

#### PET Guided Interventions





## Robots in IR

- Accuracy
- Less radiation
- Fast, Cost-effective
- Efficient
- Fewer needle attempts
- Tx planning
- Consistency



# = Better Outcomes



Bill Charboneau, Mayo

# Integration of Robotics & CT-guided Ablation













# Drug Delivery Barriers

- 1) IV vs IA
- 2) Vessel wall
- 3) Interstitium
- 4) Cell membrane & staying in cell (nucleus)

#### Blood vessels 3.3 kDa Dextran











# Molecular Interventions: targeted drug designed for device





Tumor vasculature ideal size for nanomedicine



### **Combination Targeting:** Smart IV Drug + Thermal Needle Device

Extravasation @ Edge of RFA






#### Physiologic, Thermal, & Chemical Synergy



### Percent drug release in plasma over time at diff temperatures



# RFA and ThermoDox: in vitro feasibility

- Drug Release Independent of Heat Source
- Equivalent Cytotoxicity After Heat



### Paired heat transfer & Pharmacokinetic model



Transvascular Transport depends on:

- Vessel Permeability (depends on drug molecule, f(T))
- Vessel Surface Area
- Perfusion (f(T))

# Modeling Perfusion vs Temp



#### RF ablation: Comparison Free DOX & LTSL

#### Increased drug delivery to thermal margin



### Imaging Drug Effects:

ThermoDox + RFA: Idea, animal studies & Phase I @ NIH Phase III: 5 countries, 40 cancer centers

Pre-procedure







 Enhancing rim corresponds to predicted drug location





### Drug + Device (RFA): Effect on Treated Volumes

- Bland RFA -35.8% volume
- RFA + LTSL +43.3% volume



# RFA and ThermoDox: Time to progression



# Drug eluting beads (DEB)



### Image-able Drug Eluting Beads: Pre-clinical, bench, in-vivo







# Imaging Drugs for Local Drug Dosing: personalized oncology

Distribution of bead correlates w/ true bead location (image)



# The spatial distribution of embolization beads is directly related to bead size on micro-CT

- Small image-able beads (75-100 µm) found in smaller & peripheral arteries w/ many orders of branching
- Larger beads (100-300 μm) go central w/ gaps between embolized arteries



# Imaging Dynamic Drug Delivery:

Distribution of drug correlates w/ bead location



# **30 Minutes Post Small Beads**



### 24 Hours Post: Necrosis colocalizes with drug



# Doxorubicin Line Profile for Spatial Drug Quantification

- Dox concentration is highest around beads
- Greatest concentration appears at 4 hrs
- Limited Dox at 24 hrs



### Comparison of one & many beads

 Greater concentration of Dox around more beads





# 2 Hr Confocal Microscopy – subcellular distribution



#### Pre-Drug Eluting Beads (DEB)

#### 4 Weeks Post- DEB



#### Image Guided, Non-Invasive HIFU for Tissue Destruction, Drug Delivery, or Hyperthermia



# Pulsed HIFU enhanced delivery:

| MR contrast agent (Gd)               | muscle (rabbits)   |
|--------------------------------------|--------------------|
| FITC-dextran (500 kDa)               | SCC7 tumors (mice) |
| fluorescent Nanoparticles            | JC tumors (mice)   |
| Genes - GFP (naked DNA)              | SCC7 tumors (mice) |
| ThermoDox <b>#</b> growth inhibition | mice               |
| Velcade # growth inhibition          | mice               |
| TNFa <b>#</b> growth inhibition      | SCC7 tumors (mice) |
| Radiolabled B3 Lewis Y               |                    |
| Antibodies                           |                    |
|                                      |                    |

#### Enhanced (systemic) delivery of Indium labeled monoclonal antibody in a human Epidermoid tumor model





systemic administration (tumors) HIFU 24 hr 120 hr 1 hr

Khaibullina et al 2008 J Nuc Med

#### Enhanced inhibition of tumor growth: HIFU + drug with narrow therapeutic window -Bortezomib (Velcade®)

systemic administration



Poff, Radiology

time post initial treatment (days)

# HIFU Thermal Ablation: MRI Thermometry to Sculpt Treatment





### HIFU + Thermodox™ Deposits more drug than HIFU + Doxil ™



**Clin Cancer Res 2007** 





**Clin Cancer Res 2007** 

### "Drug Dose Painting" w/ MR-Image-able, Heat-deployed Liposome

Water bath





# MR-Image-able, Heat-deployed Liposome

- 1/T1 linear function of Gd concentration
- · Can differentiate lysed carrier from non-lysed on MRI
- Relaxivity of heated LTSL increased 66% (2.4 vs. 4.0 Mm<sup>-1</sup>s<sup>-1</sup>)



Maximum (and rapid) release of Dox was observed at **temperatures above 41°C** as measured by spectrofluoroscopy



# HIFU causes release of contrast & drug

#### Pre-hifu



•Same Gd concentration

•Equal signal intensity baseline

- •Noticeably higher signal
- •Much higher signal

Post-hifu to ~41°C Post-hifu to ~43°C

# MR-HIFU w/ image-able heat-deployed liposomal carriers

- Real-time monitoring
- Precise spatiotemporal control of content release
- Noninvasive monitoring of contrast release, temperature, & potential for drug delivery assessment
- No cavitation



Locations of release in phantom

... overlayed with positions of prescribed cells



#### Feedback-controlled Liposomal Drug Delivery w/ MRI Guided HIFU





# Modify HIFU for hyperthermia, drug delivery, & thermal ablation

- Poorly perfused regions  $\rightarrow$  poor delivery of drug
  - Solutions:
    - Adjust T to perfusion for homogeneous delivery
    - Ablate residual viable tumor w/ MRI-guided HIFU



# Tissue Alteration: Immunotherapy







2 months Post RFA

# Tumor Specific Response


## **Results:** Tumor regression



## Re-challenge

Adoptive transfer confer tumor immunity



### RFA Induces APC infiltration & amplification of tumor-specific immune response



#### **CD11C IF staining**

DAPI (blue) → nuclei CD11C (green) → APC









# Team Science

Matt Dreher, Dieter Haemmerich, Ankur Kapoor, Ari Partanen, Jochen Kruecker, Sheng Xu, Sham Sokka, Karun Sharma, Elliot Levy, Aradhana Venkatesan, Nadine Abi-Jaoudeh, Mark Dewhirst, Pavel Yarmelenko, Julie Locklin, Neil Glossop, Peter Pinto, Marston Linehan, Kevin Camphausen, Aradhana Kaushal, James Pingpank, John Karanian, Bill Pritchard, Alberto Chiesa, Itzhak Avital, Udai Kammula



