S. pombe genome contains several different classes of repeat elements

The organization of genome into higher-order structures has important biological implications

- Stable maintenance of gene expression patterns during development
- Maintenance of genomic integrity and prohibition of inter- or intrachromosomal recombination in repetitive DNA sequences
- Lineage-specific control of long-range chromatin interactions
- Proper segregation of chromosomes
- Cancer and other human diseases

Host genome surveillance for retrotransposons and repeats by transposon-derived proteins

- CENP-Bs are conserved proteins that contain DNA binding and dimerization domains
- CENP-Bs are derived from transposases of POGO DNA transposons
- S. pombe genome encodes three CENP-Bs that have redundant roles in centromere chromatin assembly

CENP-Bs localize to retrotransposons and their remnants in the S. pombe genome

CENP-Bs silence LTR-associated genes and Tf retroelements

Transcriptional gene silencing effector protein complexes

CENP-Bs recruit CIr3 and CIr6 histone deacetylases to repress Tf2 retroelements

CIr3 = SHREC CIr6 = CIr6 HDAC

SHREC activities facilitate positioning of nucleosomes required for higher-order chromatin assembly

Micrococcal nuclease digestion patterns

Active Chromatin Active Chromatin SHREC and other effectors Cir6, Sir2...) Anti-silencing factors (Epe1, HATs...) Silencing and

recombination suppression

CENP-Bs and their associated HDACs are required for clustering of retrotransposon elements

FISH using Tf2 retroelement probe

WT abp1∆ clr3clr6 (HDAC)

 H_2O_2 treatment

Silencing and recombination suppression

Heterochromatin coats extended domains associated with a specific classes of repeat elements in S. pombe

Nucleation and spreading of heterochromatin

Spreading of heterochromatin requires CIr4 chromodomain binding to methylated H3K9

Heterochromatin serves as versatile recruiting platform to regulate diverse chromosomal processes

Grewal and Jia Nat Rev Genet 8:35-46

CENP-Bs and heterochromatin recruit same repressor complexes

Cascade of events at heterochromatin during the cell cycle

HP = chromodomain proteins Swi6 and Chp2

Rik1, a component of Clr4 methyltransferase, is recruited to Pol II transcribed repeats during S-phase

Rik1 binding correlates with RNAPII transcription of cen repeat elements

Transcription coupled loading of heterochromatin factors during S-phase

HP = chromodomain proteins Swi6 and Chp2

Clr4 complex components are distributed across euchromatic regions

Clr4 complex subunits show similar distribution profiles at euchromatic genes

Exploring RNAi connections to other nuclear functions

RNAi and heterochromatin machineries positively interact with factors involved RNA Pol II transcription

(JmJc)

(HDAC)

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

RNAi and heterochromatin factors show negative genetic interactions with DNA repair machinery

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

> QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

> > QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Re-wiring of conserved functional modules in different organisms

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Acknowledgments

Grewal Lab Hugh Cam Ee Sin Chen Martin Zofall Ke Zhang Tamas Fischer Bowen Cui Natalia Kommissarova Ken-ichi Yamane Chanan Rubin Takeshi Mizuguchi Nazanin Ashourian

Former Lab Members

Tomoyasu Sugiyama (Tsukuba Univ) Estelle Nicolas (CNRS, Toulouse) Ken-ichi Noma (Wistar Institute) Songtao Jia (Columbia, NY) Ira Hall (Univ Virginia) Jun-ichi Nakayama (Riken, Kobe) Takatomi Yamada (Riken, Tokyo)

Collaborators

Henry Levin (NICHD) Wolfgang Fischle (Max Planck) Peter FitzGerald (NCI) Danesh Moazed (Harvard) Nevan Krogan and Assen Roguev (UCSF)

Post-transcriptional and transcriptional heterochromatic silencing

