NCI - BSA Meeting June 28th., 2010

Glycosylation Changes in Cancer

Ajit Varki

Departments of Medicine and Cellular & Molecular Medicine Glycobiology Research and Training Center University of California, San Diego

Every Living Cell in Nature is Covered with a Dense and Complex Array of Sugar Chains (Glycans)

Varki A.: Nothing in Glycobiology Makes Sense, Except in the Light of Evolution. *Cell* 126:841-845, 2006

FDA-Approved Cancer Biomarkers

Biomarker	Туре	Source	Cancer Type	Clinical Use
a-Fetoprotein	Glycoprotein	Serum	Liver	Monitoring
a-Fetoprotein-L3	Glycoprotein	Serum	Liver	Risk
DCP	Protein	Serum	Liver	Risk
Human chorionic				
gonadotropin-β	Glycoprotein	Serum	Testicular	Staging
CA19-9	Carbohydrate	Serum	Pancreatic	Monitoring
CA125	Glycoprotein	Serum	Ovarian	Monitoring
Pap smear	Cervical smear	Cervix	Cervical	Screening
CEA	Glycoprotein	Serum	Colon	Monitoring
EGF receptor	Glycoprotein	Colon	Colon	Selection of therapy
			GI stromal	Diagnosis & selection
KIT	Protein (IHC)	GI tumor	tumors	of therapy
Thyroglobulin	Glycoprotein	Serum	Thyroid	Monitoring
PSA	Glycoprotein	Serum	Prostate	Monitoring
CA15-3	Glycoprotein	Serum	Breast	Monitoring
CA27-29	Glycoprotein	Serum	Breast	Monitoring
Cytokeratins	Protein (IHC)	Breast tumor	Breast	Prognosis
Estrogen & proge-				
sterone receptors	Protein (IHC)	Breast tumor	Breast	Selection of therapy
				Prognosis & selection
HER2/NEU	Glycoprotein (IHC)	Breast tumor	Breast	of therapy
HER2/NEU	Glycoprotein	Serum	Breast	Monitoring
				Prognosis & selection
HER2/NEU	DNA (FISH)	Breast tumor	Breast	of therapy
Chromosomes 3, 7,				Screening &
9, and 17	DNA (FISH)	Urine	Bladder	monitoring
				Screening &
NMP22	Protein	Urine	Bladder	monitoring
Fibrin/FDP	Protein	Urine	Bladder	Monitoring
BTA	Protein	Urine	Bladder	Monitoring
CEA and mucin	Glycoprotein	Urine	Bladder	Monitoring

Adapted from Ludwig, JA & Weinstein, JN Nature Rev. 2005

For Detection of Cancer and Cancer Risk

Glycosylation Changes in Cancer

- Altered glycosylation is a universal feature of cancer cells.
- This is not a random consequence of disordered biology in cancer
- Of all possible changes, only a <u>very limited subset</u> are frequently correlated with malignant transformation and tumor progression.
- As cancer is a "microevolutionary" process in which only fittest cells in a genetically heterogeneous population survive, specific glycan changes are likely selected for during tumor progression.
- Certain glycan structures are indeed well-known markers for tumor progression and/or biomarkers.

ALTERED GLYCOSYLATION IN CANCER

- Increased β1-6GIcNAc branching of N-glycans
- Changes in the amount, linkage, and acetylation of sialic acids
- O-glycan truncation, generating Tn & sialyl Tn antigens
- Failure of O-glycosylation, with mucin polypeptide exposure
- Expression of immature N-glycans
- Expression of nonhuman sialic acid Neu5Gc, from dietary sources
- Expression of sialylated Lewis structures and selectin ligands
- Altered expression and enhanced shedding of glycosphingolipids
- Increased expression of galectins and poly-N-acetyllactosamines
- Altered expression of ABH(O) blood-group-related structures
- Alterations in sulfation of glycosaminoglycans
- Increased expression of hyaluronan
- Loss of expression of GPI anchors.

The increased size of N-glycans that occurs upon transformation can be explained by an elevation in GlcNAc transferase-V (GNT-V) activity

Upregulated In Cancer

Chapter 44, Figure 1

Loss of normal topology and polarization of epithelial cells in cancer results in secretion of mucins into the bloodstream

Incomplete glycosylation in the O-linked pathway results in expression of the Tn antigen, the sialylated Tn antigen

Potential interactions that could occur between tumor cells and selectins (All shown in vitro. Most shown in vivo)

Essentials of Glycobiology Second Edition

Chapter 44, Figure 6

Some pathways for expression of gangliosides in human neuroectodermal tumors

Essentials of Glycobiology Second Edition

Chapter 44, Figure 4

Two Major Kinds of Sialic Acids on Mammalian Cells

Modified from: Varki, A. Nature 446: 1023-1029, 2007

Contamination of Humans by Dietary Gc* in the Face of Anti-Gc Antibody Responses: Opportunities for Early Detection, Diagnosis, Prognosis and Therapy of Cancer

Each Neu5Gc-Containing Glycan Represents a Distinct Immune Epitope

A Novel Sialoglycan Array that Allows Detection of Neu5Gc-Specific Antibodies

Slide Modified from Varki et al. *Essentials of Glycobiology*, Chapter 44, Figure 3

ALTERED GLYCOSYLATION IN CANCER: POTENTIAL FOR BIOMARKER DISCOVERY

- Increased β1-6GIcNAc branching of N-glycans
- Changes in the amount, linkage, and acetylation of sialic acids
- O-glycan truncation, generating Tn & sialyl Tn antigens
- Failure of O-glycosylation, with mucin polypeptide exposure
- Expression of immature N-glycans
- Expression of nonhuman sialic acid Neu5Gc, from dietary sources
- Expression of sialylated Lewis structures and selectin ligands
- Altered expression and enhanced shedding of glycosphingolipids
- Increased expression of galectins and poly-N-acetyllactosamines
- Altered expression of ABH(O) blood-group-related structures
- Alterations in sulfation of glycosaminoglycans
- Increased expression of hyaluronan
- Loss of expression of GPI lipid anchors.