CTD2: Functional Cancer Genomics

Characterization of cancer genomes is essential but not sufficient

- Hundreds to thousands of candidates in each tumor
- Distinguishing Driver vs. Passenger mutations
- Drivers: Tumor initiation or maintenance
- Context-specific actions of particular genetic elements

Prioritization must be based on <u>both</u> genomic <u>and</u> biological weight of evidence

Functional interrogation of cancer genomes

Gain-of-function: ORFs

Connect genotype to function

Cancer Genome Annotation

The Cancer Genome Atlas ()

cosmic_୍

Experimental cancer models

Identify potential Achilles' Heels

Cancer Target Discovery and Development (CTD²) Network

Integrated functional cancer genomics

DFCI Cancer Target Discovery & Development Center

Genome scale barcoded shRNA screens

Biao Luo Tony Cheung Aravind Subramanian David Root

Identification of genes essential in ovarian cancer

Tony Cheung, Glenn Cowley, Barbara Weir, Biao Luo Jesse Boehm, Dave Root

Integrating functional and structural genomics in ovarian cancer

Transformation of immortalized ovarian surface epithelial cells

Immortalized

Transformed

SV40 LT/ST, hTERT

<u>Cell line</u>	<pre># tumors/# injection sites</pre>
Vector	0/9
ID4	0/9
MEK ^{DD} + IacZ	4/21
MEK ^{DD} + ID4	21/27
MEK ^{DD} + ID4_DM	2/18

Identification of ID4 as an ovarian cancer oncogene

Loss-of-Function

Genes essential for ovarian cancer proliferation

Gain-of-Function

Genes that induce ovarian tumor formation

Yin Ren, Sangeeta Bhatia Tony Cheung, Jesse Boehm, Glenn Cowley

Context Specific Functional Genomic Screening Platform

Integrated genomic pipeline

Novel validated cancer drivers that merit consideration for drug discovery efforts

Cold Spring Harbor Laboratory Cancer Target Discovery & Development Center

Scott Powers, Scott Lowe

Integrate cancer genome computational analysis, mouse models, and in vivo screening to identify and validate new cancer genes, pathways, and tumor dependencies / therapeutic targets

1. Computational Analysis of Cancer Genomes

2. Construction of oncogenomically focused shRNA and cDNA libraries

3. Screen for oncogenicity with a transplantable mouse model

4. Test for tumor dependency with mouse models and human cancer <u>cell lines</u>

Under construction

Cold Spring Harbor Laboratory Cancer Target Discovery & Development Center

Summary of findings

- Discovery and validation of 20 novel TSGs and oncogenes
- Unexpected number of identified tumor suppressors encode secreted proteins
- Discovered FGF19 oncogene dependency in human HCC cell lines containing the FGF19 amplicon
- This pinpoints for the first time a candidate cancer drug that selectively targets a genetic abnormality in HCC.

UTSW Cancer Target Discovery & Development Center

A CONCERTED ATTACK ON PATIENT SPECIFIC ONCOGENIC VULNERABILITIES IN LUNG CANCER

Objective : to employ parallel phenotypic screening of genomewide siRNA libraries and a diverse chemical compound file to return authentic drug lead/target relationships

> Mike Roth Michael White John Minna

mRNA Expression Profiles Identify 6 Major Subtypes (Clades) of Non-Small Cell Lung Cancer

Multidimensional Scaling Plot

mRNA Defined Clades from the NSCLC Lines Are also Found in Primary NSCLCs

Probability (using PAM, prediction analysis of microarray method) of each primary tumor sample belonging to a particular NSCLC Line Defined Clade

Low probability of belonging to a Clade

High probability of belonging to a Clade

(NSCLC Data from Bild Nature 2006 (439), 353-357)

mRNA Defined Clades Identify Different NSCLC Drug Response Phenotypes

Drug Sensitivity Frequency in Clades

High probability of sensitivity

High probability of Resistance

Genome Wide siRNA Library Screens Reveal Clade-Selective Vulnerabilities

Cancer Target Discovery and Development (CTD²) Network

Network interactions and synergy

State of the art technological platforms

Data sharing

Model sharing

Development of new informatics

Deliverables to cancer research community

Reagents and Informatic tools

Large scale functional datasets (in vitro and in vivo)

Experimental models

Integrative data to inform investigator initiated research