Realizing society's expectations of the cancer community

Realizing society's expectations of the cancer community

Gameen thes

Anna Barker: Intro

1. Stuart Schreiber: Overview and small-molecule probes

Genomes

- 2. William Hahn: LoF, GoF RNA
- 3. Andrea Califano: Systems analyses

Cancer Target Discovery and Development (CTD²) Network

Gerhard, William C. Hahn, Scott Powers, Michael Roth, Stuart L. Schreiber, in review

Relating a genetic feature of a cancer to the efficacy of a drug

Philadelphia translocation: Janet Rowley

Brian J Druker, Nature Medicine 15, 1149-1152 (2009)

Relate cancer genetic features to drug efficacy comprehensively

Philadelphia translocation: Janet Rowley

Brian J Druker, Nature Medicine 15, 1149-1152 (2009)

Facilitate efficient paths for clinical development prospectively

Philadelphia translocation: Janet Rowley

Brian J Druker, Nature Medicine 15, 1149-1152 (2009)

Cancer Target Discovery and Development (CTD²) Network

Relate the genetic features of cancers to acquired cancer dependencies and identify small molecules that target the dependencies (¹Broad; ²CSHL; ³Columbia; ⁴DFCI; ⁵UTSW)

Cancer Target Discovery and Development (CTD²) Network

Relate the genetic features of cancers to acquired cancer dependencies and identify small molecules that target the dependencies (¹Broad; ²CSHL; ³Columbia; ⁴DFCI; ⁵UTSW)

Small-molecule cancer probes against challenging targets

Advances exploited by CTD² and enabling a disciplined approach to cancer drug discovery:

- innovations in next-generation synthetic chemistry that reach 'undruggable' targets or processes.
- innovations in cell culturing and screening in physiologically relevant conditions (tumor microenvironment)
- innovations in determining the targets and mechanisms of small-molecule probes and drugs.

Cancer Target Discovery and Development (CTD²) Network

Relate the genetic features of cancers to acquired cancer dependencies and identify small molecules that target the dependencies (¹Broad; ²CSHL; ³Columbia; ⁴DFCI; ⁵UTSW)

Small-molecule probes of ID4: an ovarian cancer oncogene

Gain-of-Function Genes that induce ovarian tumor formation

Small-molecule probes of ID4: an ovarian cancer oncogene

Cancer Target Discovery and Development (CTD²) Network

Relate the genetic features of cancers to acquired cancer dependencies and identify small molecules that target the dependencies (¹Broad; ²CSHL; ³Columbia; ⁴DFCI; ⁵UTSW)

Small-molecule probes of STAT3 in glioblastoma multiforme

Andrea Califano et al.

Small-molecule probes of STAT3 in glioblastoma multiforme

Andrea Califano et al.

CTD² Network: challenging probe development projects

	Assay Project Name	Collaborator
CTD ² Network Collaborations	Stat3 - SMM	Columbia-CTD ²
	CEBPβ/δ - SMM	Columbia-CTD ²
	ID4	DFCI-CTD ²
	tumor cell dependency	CSHL-CTD ²
	TBK1	DFCI-CTD ²
CTD ² Broad Collaborations	Мус	Koehler / Ebert
	IDH1 mutants	Liu / Shamji
	Hb-EGF - SMM	Mandinova / Lee
	ROS dissipation	Wagner / Mandinova
	p53 mutant activation - SMM	Mandinova
	p53 mutant activation - cell based	Mandinova
	NFkB	Koehler
	ETS-TF	Garraway
	JMJD2C	Kubicek
	LSD 1	Kubicek
	EZH2	Paulk / Schreiber
	NSD family	Adams / Schreiber
	DOT1	Paulk / Schreiber
CTD ² proposed outreach ideas	Mitochondria Glutaminase	
	JARID1A	
	Glut1	
	Deubiquitinase	

Cancer Target Discovery and Development (CTD²) Network

Relate the genetic features of cancers to acquired cancer dependencies and identify small molecules that target the dependencies (¹Broad; ²CSHL; ³Columbia; ⁴DFCI; ⁵UTSW)

Modeling human cancers: cancer genetic features in mice

A context-specific functional genetic screening platform: promoting cancers

Scott Lowe, Scott Powers, et al.; and Ron DePinho, Linda Chin, Bill Hahn

Modeling drug target inhibition: inducible RNA in vivo

Targeting non-oncogene co-dependencies (synthetic lethality)

Stockwell, Haggarty, SLS, *Chem & Biol*, **6**, 71-83 (1999); see also: Luo, Solimini, Elledge, *Cell*, **136**, 823-37 (2009)

RAS changes cancer metabolism and small-molecule sensitivity

Drugs matched to genetic features, not cancer metabolism

RAS changes ROS biology and small-molecule sensitivity

MMTV-PyVT transgenic mouse breast cancer model

control

BRD2293

- Discovered in an NCI ICG probe project
- Induces cell death/apoptosis in transformed but not in normal cells
- Prevents tumor growth in vivo (xenograft and spontaneous cancer models) in low doses safely
- Quantitative proteomics reveals a target: GSTP1/CBR1/AHNAK complex, and mechanism-of-action studies reveal a process: dissipation of ROS

"Sensing the cancer genotype by targeting stress response to ROS results in selective killing of cancer cells by a small molecule", **submitted**

Sensitivity to BRD293 is conferred by mutant RAS

Mutant RAS increases levels of ROS in cells: Lee et al., J. Biol. Chem. 274, 7936-7940 (1999)

CTD² probe development for additional targets in ROS biology

Cancer drugs matched to genetic features, not 'ROS metabolism'

Cell-line models of cancer: from NCI-60 to ChemBank

NCI-60: Cancer cell line/small molecule sensitivity relationships (GI₅₀ measurements)

NCI-sponsored ChemBank: Cancer cell line/small molecule sensitivity/cell measurement relationships (Paul Clemons)

Next-generation cancer cell line databases: CTD² at UTSW

See also studies at MGH (Settleman, Haber & collaborators)

HTS identifies selective small-molecule vulnerabilities in NSCLC

Cancer cell line encyclopedia: a promising public resource

Broad/Novartis CCLE Project: Jordi Barretina, Levi Garraway, Bill Sellers, and collaborators

CTD² probe kit: highly **specific** SM probes of new cancer targets

CTD² probe kit representative examples; a living collection

Compound	Pathways	Target/Depend encies	Potency	Selective	Efficacious	Clinical Candidate
KU-0059436	DNA damage response	PARP1/2	~	~	~	~
SNX-2112	proteotoxic stress	HSP90	~	~	~	~
JTT-705	metabolism	CEPT	~	~	 	~
MLN4924	proteotoxic stress	NAE	~	~	~	~
MK-0591	metabolism	FLAP	 	~	 ✓ 	~
SRT-1720	chromatin	SRT1 activator	~	~	~	
BRD-293	ROS	ROS metabolism	~	v	v	
XAV-939	DNA damage response	tankyrase	~	~		
SJ-172550	DNA damage response	MDMX	~	~		
SCH529074	DNA damage response	muP53 DBD	~	v		

reported in past several months

CCLE and the CTD² small-molecule probe kit (in progress)

CTD² pilot of the probe set suggests new clinical directions

CTD² pilot of the probe set suggests new therapeutics (HDAC6)

CTD² is discovering and using small-molecule probes of cancer

RNA LoF/GoF; systems analyses

probe development projects

Discover small-molecule probes that target non-traditional cancer dependencies (**TFs**; **chromatin**; etc.) Discover relationships between cancer genetic features and small-molecule efficacies

CTD² Network: an integrated approach to cancer therapeutics

CTD² pilot of the probe set suggests new therapeutics

