http://proteomics.cancer.gov

Performance and Optimization of LC-MS/MS Platforms for Unbiased Discovery of Biomarker Candidates

Daniel C. Liebler

Vanderbilt University School of Medicine Vanderbilt, Tennessee

A Functioning Pipeline for Cancer Biomarker Development Requires Both Discovery and Directed Assay Components

CLINICAL PROTEOMIC

Shotgun proteomics for biomarker discovery

•few (<20) samples or sample pools

low throughput

•Identify ~5,000+ proteins

•inventory differences ~50-500+ proteins

Challenges

 > 10⁶ range of protein concentrations in tissues, biofluids

CLINICAL PROTEOM

- no technology yet capable of complete sampling of proteomes
- multiple instrument systems used
- variability in detection of proteins

No systematic studies of variation in shotgun proteomics Impact of variation on performance for unbiased discovery unknown

HUPO Study

"A HUPO test sample study reveals common problems in mass spectrometry-based proteomics" *Bell et al. Nature Methods (2009)* **6**: 423-430

20 protein mixture distributed to 27 labs; no standardized methods or data analysis

only 7 labs correctly ID all 20 proteins

Coaching \rightarrow reanalyses \rightarrow common bioinformatics

• all 27 labs correctly ID "most" proteins

Conclusions:

- Variable performance within and between labs
- better databases and search engines needed, as is training in their use

Key questions not addressed:

- Is the technology inherently variable?
- What are the sources of variation?
- How reproducible are analyses of complex biological proteomes?

CPTAC Unbiased Discovery Workgroup: Goals

Evaluate and standardize performance of proteomic *discovery* platforms and standardize their use

- Identify and characterize sources of variation
- Develop quality control metrics
- Employ defined protein mixtures and biologically relevant proteomes
- Evaluate sensitivity for protein detection at defined levels of concentration

CPTAC Discovery WG studies: from simple to complex proteomes

study	1	2	3	5	6	8					
samples											
instruments	various instruments	\rightarrow									
SOP	none	v. 1.0	v. 2.0	v. 2.1	v. 2.2	none					
	SOP refinement										
- Equiv											
Sample complexity											

CLINICAL PROTEOMIC TECHNOLOGIES 108 CANCER

60

Repeatability and reproducibility are robust across laboratories

CLINICAL PROTEOMIC

Saccharomyces cerevisiae proteome reference material

- Complex protein matrix (6,000 ORFs)
- Reproducible preparation possible
- Quantitative TAP tag studies (Ghaemmaghami, S. et al. (2003) Nature 425, 737-741) provide calibration for expression levels
- Statistical power for modeling depth of coverage by proteomics platforms
- Use with human protein spikes enables modeling for biomarker discovery applications
- Made available to proteomics community (NIST)

Ghaemmaghami, S. et al. (2003) Nature 425, 737-741

Modeling detection of human protein "biomarker" spikes in yeast matrix

•48 human protein (UPS) spikes in yeast proteome background

CLINICAL PROTEOMIC

•"simple" discovery system distinguishes differences equivalent to 0.5 – 1.3% of proteome

Case Sample	# identified biomarkers ^b	# true positives ^c	# true negatives ^d	# false positives ^e	# false negatives ^f	Sensitivity ^g	Specificity ^h
Study 6 SOP (yeast+ 0.25 fmol / ul UPS)	0	0	2522	0	48	0.0	1.0
Study 6 SOP (yeast+ 0.74 fmol / ul UPS)	3	3	2522	0	45	0.1	1.0
Study 6 SOP (yeast+ 2.2 fmol / ul UPS)	17	17	2522	0	31	0.4	1.0
Study 6 SOP (yeast+ 6.7 fmol / ul UPS)	32	32	2522	0	16	0.7	1.0
Study 6 SOP (yeast+ 20 fmol / ul UPS)	43	41	2520	2	7	0.9	1.0

Spike concentration (fmol/ul)

System map of LC-MS performance metrics

CLINICAL PROTEOMIC

Diagnosing and correcting system malfunction

Peptide Identification 5000 70 LTQ@73 LTQ@95-rep. LTQ@95 LTQ@73 LTQ@95 LTQ@95-rep. 60 4000 50 **Metric Value** 40 3000 30 2000 ▋┓┫ 20 ┏╌┛╌┛╶┛ 10 1000 0 0 10 12 14 16 18 20 22 0 6 2 4 8 0 8 10 12 14 16 18 20 22 2 6 4 Run Run C-1A ('bleed' -4 min.) %*100 P-1 (med. f-value score for IDs) *1,000 C-1B ('bleed' +4 min.) % *100 P-2A (total IDs) C-2A middle 50% pep RT period P-2B (unique ion IDs) $\mathbf{\nabla}$ ∇ C-2B rate (peptides/min.) over C-2A \triangle P-2C (unique peptide IDs) \triangle C-3A med. peak width C-3B (disperson for peak widths)

Chromatography

CLINICAL PROTEOMIC TECHNOLOGIES FOR CANCER

CPTAC study 5

CPTAC Unbiased Discovery Workgroup: Key Achievements

- 1. First systematic, SOP-driven study of LC-MS/MS analytical systems across multiple laboratories
- 2. Quantitative assessment of repeatability and reproducibility in peptide vs. protein detection
- 3. Yeast reference proteome standard and accompanying datasets
- 4. Yeast reference proteome with spikes enables quantitative modeling of power to discover biomarker candidates
- 5. Performance metrics and software ("toolkit") to monitor and troubleshoot system performance

Next steps for Discovery WG

Evaluate performance of platforms to discriminate between cancer-relevant phenotypes

- Phase II Studies
 - Human breast cancer cell model; responses to TKI
 - Compare commonly employed quantitative methods for survey of differences
- Phase III studies
 - Human tumor tissue specimens corresponding to defined clinical phenotypes
 - Evaluate phenotype discrimination
 - Implement methods, metrics and approaches developed in Phase I, Phase II studies

Backups

Why care about reproducibility in discovery proteomics?

 Biomarker candidates come from comparing proteomes from different phenotypes

CLINICAL PROTEOMIC

2. Need to know whether observed differences are due to biology or to variability in the analytical system.

Yeast proteome enables calibration and comparison of detection efficiency

a. Study 8 high load

CLINICAL PROTEOMIC TECHNOLOGIES FOR CANCER

Metrics identify the greatest sources of variability

P-2A P-2B P-2C (unique peptide IDs) а P-1 (med. f-value score for IDs) MS2-4D (fract. ID'd Q4) MS2-4C (fract. ID'd Q3) MS2-4B (fract. ID'd Q2) MS2-2 (S-N for IDs) MS2-3 (med. num peaks for IDs) Chromatography MS2-4A (fract. ID'd Q1) MS2-1 (Ion injection (ms) for IDs) **Dynamic Sampling** MS1-3A (dynamic range 95th-5th for IDs) MS1-3B (med. MS1 signal for IDs) Ion Source MS1-2B (med. TIC-1e3 over C-2A) MS1 MS1-1 (ion injection (ms) for IDs) MS2 MS1-2A (S-N) IS-3C (ratio IDs +4/+2) Peptide Identification IS-3B (ratio IDs +3/+2) IS-3A (ratio IDs +1/+2) IS-2 (med. precursor m/z) DS-1B (oversampling - twice/thrice) DS-1A (oversampling - once/twice) DS-2A (MS1 Scans over C-2A) DS-2B (MS2 Scans over C-2A) DS-3A (med. MS1max/MS1sampled all IDs) DS-3B (med. MS1max/MS1sampled for bottom 50% by abund.) C-1B ('bleed' +4 min.) /10 C-1A ('bleed' -4 min.) /10 C-3B (Interguartile for peak widths) C-2B (peptides/min.) C-2A (IQ pep. RT period) C-3A (med. peak width) 15 20 25 30 0 5 10 35 Median Intralab %dev

CPTAC Study5 Intralaboratory Variability 3LTQs, 3 Orbitraps, 6 replicates each

CLINICAL PROTEOMIC TECHNOLOGIES FOR CANCER