NCI’s Clinical Proteomic Technologies for Cancer:
“Restructuring Proteomics to Succeed in Discovering Cancer Biomarkers”
BSA Update Progress Report
June 2009

Joe Gray (moderator)
Lawrence Berkeley National Laboratory
Thus far, there are only 9 FDA-approved cancer protein biomarkers in blood.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>US Food and Drug Administration-approved cancer biomarkers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomarker</td>
<td>Type</td>
</tr>
<tr>
<td>α-Fetoprotein</td>
<td>Glycoprotein</td>
</tr>
<tr>
<td>Human chorionic gonadotropin-β</td>
<td>Glycoprotein</td>
</tr>
<tr>
<td>CA19-9</td>
<td>Carbohydrate</td>
</tr>
<tr>
<td>CA125</td>
<td>Glycoprotein</td>
</tr>
<tr>
<td>Pap smear</td>
<td>Cervical smear</td>
</tr>
<tr>
<td>CEA</td>
<td>Protein</td>
</tr>
<tr>
<td>Epidermal growth factor receptor</td>
<td>Protein</td>
</tr>
<tr>
<td>KIT</td>
<td>Protein (IHC)</td>
</tr>
<tr>
<td>Thyroglobulin</td>
<td>Protein</td>
</tr>
<tr>
<td>PSA (total)</td>
<td>Protein</td>
</tr>
<tr>
<td>PSA (complex)</td>
<td>Protein</td>
</tr>
<tr>
<td>PSA (free PSA %)</td>
<td>Protein</td>
</tr>
<tr>
<td>CA15-3</td>
<td>Glycoprotein</td>
</tr>
<tr>
<td>CA27-29</td>
<td>Glycoprotein</td>
</tr>
<tr>
<td>Cytokeratins</td>
<td>Protein (IHC)</td>
</tr>
<tr>
<td>Oestrogen receptor and progesterone receptor</td>
<td>Protein (IHC)</td>
</tr>
<tr>
<td>HER2/NEU</td>
<td>Protein (IHC)</td>
</tr>
<tr>
<td>HER2/NEU</td>
<td>Protein</td>
</tr>
<tr>
<td>HER2/NEU</td>
<td>DNA (FISH)</td>
</tr>
<tr>
<td>Chromosomes 3, 7, 9 and 17</td>
<td>DNA (FISH)</td>
</tr>
<tr>
<td>NMP22</td>
<td>Protein</td>
</tr>
<tr>
<td>Fibrin/FDP</td>
<td>Protein</td>
</tr>
<tr>
<td>BTA</td>
<td>Protein</td>
</tr>
<tr>
<td>High molecular weight CEA and mucin</td>
<td>Protein (Immunofluorescence)</td>
</tr>
</tbody>
</table>

Where Clinical Proteomics Is Today

Few biomarker candidates translating into clinical utility

- Lack of new discoveries
- Questionable discoveries (claims)
- Lost opportunities

Source: Based on data from FDA and Plasma Proteome Institute
Understanding the Issues

NCI listens to experts

Experts identify barriers (issues)

1. Experimental design
2. Technical barriers (platform evaluation / optimization)
 - Discovery (survey) stage
 - Verification (targeted) stage
3. Biospecimen collection, handling, storage and processing
4. Data acquisition, analysis and reporting

Need to address sources of variability and bias
Addressing the Issues

- NCI establishes CPTC Oct. 2006 to Support Biomarker Development
 - Develop bias-free biospecimen procedures and repositories.
 - Evaluate and standardize performance of proteomic discovery platforms and standardize their use.
 - Evaluate and standardize proteomic validation platforms for analysis of cancer-relevant proteomic changes in human clinical specimens.
 - Develop and implement uniform algorithms for sharing bioinformatics and proteomic data and analytical/data mining tools across the scientific community.
 - Develop standard/reference materials and reagents for the proteomic community.

CPTC components:
- a) CPTAC Center Network $35.5M Total
- b) Individual PI – Adv. Proteomic Platforms & Computational Sciences $56M Total
- c) Reagents & Resources $12.5M Total

CPTAC Centers: multidisciplinary team network
CPTAC Center Network Presentation

Outline

- **Technical Barriers (Discovery and Verification)**
 - *Daniel Liebler*: Discovery (survey) proteomics – Refining discovery
 - *Steven Carr*: Verification (targeted) proteomics – Filling the gap

- **Experimental Design and Biospecimens**
 - *David Ransohoff*: Addressing chance and bias

- **CPTC Additional Highlights and Data Analysis/Sharing**
 - *Henry Rodriguez*

- **Wrap-up**
 - *Joe Gray*

Bio-Specimens
- Plasma
- Tissue
- Proximal fluids

Discovery
- Tissue
- Proximal fluids

Verification
- Blood
- Population

Clinical Validation
- Blood
- Population
NCI’s Clinical Proteomic Technologies for Cancer:
“Restructuring Proteomics to Succeed in Discovering Cancer Biomarkers”

Wrap-up

Joe Gray
Lawrence Berkeley National Laboratory
Program Goals for next 2 years

Biospecimens
• Establish plasma biorepository of BRCA/normal, with specific effort to avoid bias by collecting prior to diagnosis

Discovery Studies (inter-lab)
• Evaluate relative quantification methods in discovery proteomic technologies using cancer cell model (proteins and PTMs)
• Establish ability to detect cancer-relevant differences in tissue or proximal fluid specimens

Verification Studies (inter-lab)
• Define performance of MRM-MS at ~100-plex level for cancer-relevant proteins at ng/mL range in plasma and conduct “blinded” study
• Develop training course and reagent kits to aid widespread adoption
• With FDA, vendors move MRM-MS of peptides toward clinical acceptability
Projected outcomes of CPTAC program

Large, unbiased plasma collection for breast cancer BMD and “best practices” for collection for proteomic studies

Establish a robust pipeline for biomarker candidate discovery through pre-clinical verification
 • Clear understanding of relative merits and performance characteristics of best MS platforms for proteomic biomarker discovery
 • Robust, transferable MRM-MS technology for verification of biomarker candidates in blood at ng/mL levels with near clinical assay performance

Build bridge between “Discovery Omics” and Clinical Validation
 • Proteomics Community poised to apply technologies for real BMD and Verification in patient samples
Accomplishments
slides
Accomplishments: Experimental design and biospecimens

- Plasma samples from 2,000 patients with breast lesion being accrued (current >590)
- Collection prior to diagnosis from biopsy, therefore strongly unbiased
- Expect 500 breast cancers, 1500 benign disease
- Multi-site biospecimen tracking database (DB) developed, with strong pathology annotation (in alpha testing)
- Centralized biorepository identified (NCI-Frederick); will link their DB with CPTAC’s biospecimen DB

Bio-Specimens
- Plasma
- Tissue
- Proximal fluids

- untargeted proteomics
- genomics
Accomplishments: Discovery-stage

- First quantitative assessment of discovery proteomics technology platforms across laboratories
- Development of standard proteomes and performance mixtures for technology assessment
- Development of performance metrics “toolkit” for QC and standardization of proteomics technology platforms
Accomplishments: Verification-stage

- First large-scale evaluation of targeted MS technology (MRM-MS) for sorting through large lists of biomarker candidates to identify the most promising ones to advance to clinical validation.
- Demonstrated that multiplexed, quantitative MRM-MS-based assays can be rapidly and robustly configured and deployed for measurement of proteins in plasma.
- Near-clinical assay performance with respect to reproducibility can be achieved.
- Reagents, methods and multi-laboratory datasets produced.
- Aid acceptance and adoption by proteomics and clinical communities.